本次要整理记录的内容是有关于图像二值化的知识,图像二值化是一种非常重要的预处理手段,这步操作所得到的二值图像对后续的图像处理过程会有非常大的影响。如果能够获得质量很高的二值图像,那么后续的处理操作也会简便得多。
- 全局阈值分割
要对图像进行二值化操作,首先需要将图像转换成灰度图像,然后设置一个用来进行二值分割的阈值,再遍历灰度图像的每个像素点,如果该像素点的灰度值大于阈值,就将该像素点设为255的灰度值,如果该像素点的灰度值小于阈值,就将该像素点设为0的灰度值。这样就实现了最简单的图像二值化,下面给出代码实现:
Mat image_gray;
cvtColor(image, image_gray, COLOR_BGR2GRAY);
Scalar m = mean(image_gray); //mean(Mat())函数的返回值是一个Scalar对象
int threshold = m[0]; //以灰度图的像素值均值作为二值分割的阈值
int height = image.rows;
int width = image.cols;
Mat binary = Mat::zeros(image.size(), CV_8UC1);
for (int row = 0; row < height; row++)
{
for (int col = 0; col < width; col++)