OpenCV4学习笔记(20)——二值分割

本次要整理记录的内容是有关于图像二值化的知识,图像二值化是一种非常重要的预处理手段,这步操作所得到的二值图像对后续的图像处理过程会有非常大的影响。如果能够获得质量很高的二值图像,那么后续的处理操作也会简便得多。

- 全局阈值分割

要对图像进行二值化操作,首先需要将图像转换成灰度图像,然后设置一个用来进行二值分割的阈值,再遍历灰度图像的每个像素点,如果该像素点的灰度值大于阈值,就将该像素点设为255的灰度值,如果该像素点的灰度值小于阈值,就将该像素点设为0的灰度值。这样就实现了最简单的图像二值化,下面给出代码实现:

Mat image_gray;
	cvtColor(image, image_gray, COLOR_BGR2GRAY);
	Scalar m = mean(image_gray);			//mean(Mat())函数的返回值是一个Scalar对象
	int threshold = m[0];			//以灰度图的像素值均值作为二值分割的阈值
	int height = image.rows;
	int width = image.cols;
	Mat binary = Mat::zeros(image.size(), CV_8UC1);
	for (int row = 0; row < height; row++)
	{
   
		for (int col = 0; col < width; col++)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值