OpenCV4学习笔记(40)——FAST特征提取算法与BRIEF特征描述算法

在上一篇博文《OpenCV4学习笔记(38)》中记录的SIFT算法是一种包含了特征提取和描述的算法,而今天要整理记录的是分别对应于图像特征的提取和描述两个方面的FAST特征提取算法和BRIEF特征描述算法。

  • FAST特征提取算法
    FAST(Features from Accelerated Segment Test-加速段测试特征)特征点提取算法,是一种简单快速的特征提取算法,因为其具有比较快的运算速度和还算不错的特征提取效果而被广泛应用于实时检测系统中。但是对于某些由于光照不均匀或存在阴影等因素而导致局部对比度不同的图像,FAST算法提取特征的适应性和特征提取效果都很不理想。

    FAST特征点提取算法的主要思想如下,通过检测某一个像素点的邻域中是否存在足够多的、连续的、大于或小于该中心像素点灰度值的像素点,如果存在则表明该中心像素点可以作为被检测出的特征点,如果邻域中不存在这样连续的满足条件的像素点,则该中心像素点作为非特征点被淘汰掉。

    假设一个中心像素点p,以半径为3的离散圆选择其邻域像素,则中心像素点p被16个像素点包围,并将这十六个邻域像素点编号如下:

     				         			16  1  2
								 15					3										
							  14						4		
							  13		   p			5
							  12						6
								 11					7
									    10  9  8

如果在p点的16个邻域像素点中存在n个连续的像素点,每个像素点的灰度值都比 I(p)+t 要大,或者是都比 I(p)-t 要小,则中心

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值