【深度学习数学工具】先验概率和后验概率

本文介绍了贝叶斯统计中的先验概率和后验概率概念,以及它们如何通过贝叶斯定理在面对新证据时更新信念。这两个概率在统计决策和机器学习等领域发挥关键作用,展示了如何根据新数据不断调整预测模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先验概率(Prior probability)和后验概率(Posterior probability)是贝叶斯统计中的两个核心概念,它们在概率论和统计决策中扮演着重要的角色。

先验概率

先验概率是在获得新的证据或数据之前,关于一个不确定性命题的初始判断或信念的概率。它基于以往的经验和知识。例如,如果我们知道历史上某地区70%的日子都是晴天,那么在缺乏任何其他信息的情况下,我们可以说明天该地区晴天的先验概率是70%。

后验概率

后验概率是在考虑了新的证据或数据之后,对同一个不确定性命题的信念的更新。后验概率是基于新证据和先验概率计算得出的。继续上面的例子,如果我们得知明天该地区有一个前来的暴风雨,这个新信息将影响我们对明天天气的判断,我们将基于这个新证据来更新明天是晴天的概率,这个更新后的概率就是后验概率。

贝叶斯定理

贝叶斯定理是计算后验概率的一个重要工具,它基于先验概率和新证据之间的关系来更新我们的信念。贝叶斯定理的数学表达式如下:

P ( A ∣ B ) = P ( B ∣ A ) ⋅ P ( A ) P ( B ) P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

  • P ( A ∣ B ) P(A|B) P(AB) 是后验概率,表示在事件B发生的条件下,事件A发生的概率。
  • P ( B ∣ A ) P(B|A) P(BA) 是似然概率,表示在事件A发生的条件下,事件B发生的概率。
  • P ( A ) P(A) P(A) 是A的先验概率。
  • P ( B ) P(B) P(B) 是B的边缘概率,即B发生的总概率。

通过贝叶斯定理,我们可以根据新的证据来不断更新我们对某一事件发生概率的评估,这在统计推断、机器学习、数据科学等领域有广泛的应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值