【思考】为什么大模型lora微调经常用在attention的Q和V层而不用在K层呢

LoRA(Low-Rank Adaptation)通常在模型微调时被用于Transformer模型的注意力(Attention)机制中,尤其是在查询(Query, Q)和值(Value, V)层,而不是键(Key, K)层。这种选择背后有几个原因,主要涉及到模型效率、特定层的作用以及对最终性能的影响。

1. 注意力机制的工作原理

在Transformer模型中,注意力机制的核心是通过计算查询(Q)与键(K)的相似度来决定值(V)的加权组合。这种机制允许模型动态地关注(或“注意”)输入序列中不同部分的信息。

2. LoRA的应用目的

LoRA通过在预训练模型的参数上添加低秩更新,实现对模型的微调,从而提高模型在特定任务上的表现,同时保持大部分预训练参数不变。这种方法旨在以较小的参数变化实现对模型行为的有效调整。

3. 为什么偏向于Q和V层

  • 参数效率:微调时关注于最能影响模型输出和性能的部分。Q层和V层直接影响到注意力权重的计算和最终的输出表示,因此在这些层上进行调整可以更直接地改变模型的行为。
  • 影响信息选择:通过调整Q层,可以影响模型如何选择信息(即,它“注意”哪些信息),而通过调整V层,可以影响一旦选择了某些信息,模型如何利用这些信息。K层主要影响的是信息的匹配方式,而在许多情况下,调整Q和V已足够引导模型关注到更有用的信息上。
  • 计算效率:虽然LoRA的目的是通过低秩更新提高参数效率,但在所有层上应用这种更新仍会增加额外的计算负担。因此,选择对最终性能影响最大的层进行调整可以在增加最小计算成本的同时获得最大的性能提升。
  • 实验和经验:实际应用中的经验和研究表明,在Q和V层上应用LoRA微调通常能够有效改善特定任务的性能。这可能是因为这些层在模型中扮演着关键角色,对输出的影响较大。

总的来说,选择在Q和V层而不是K层应用LoRA的决策主要基于提高模型微调效率和效果的考虑。这种策略旨在通过最小的参数更新实现对模型注意力机制的有效调整,从而提高在特定任务上的表现。

  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LoRA(Large-scale Reinforcement Learning from Image Pixels with Latent Actions)是一种用于微调大型模型的方法,它结合了强化学习和图像像素级别的训练。LoRA的目标是通过观察环境中的图像像素,并根据这些像素采取相应的行动来学习一个能够解决复杂任务的模型。 具体来说,LoRA使用了一个基于像素的强化学习框架,其中模型通过观察环境中的图像像素来学习如何采取最佳行动。这种方法的一个关键特点是,模型不需要任何先验知识或手工设计的特征,而是直接从原始像素数据中学习。 LoRA的训练过程包括两个阶段:预训练和微调。在预训练阶段,使用自编码器来学习图像的表示。自编码器是一种无监督学习方法,它通过将输入图像压缩成低维编码,然后再将编码解压缩为重构图像。通过这种方式,自编码器可以学习到图像的有用特征。 在微调阶段,使用强化学习算法(如Proximal Policy Optimization)来优化模型的策略。模型通过观察环境中的图像像素,并根据当前的状态选择最佳的行动。通过与环境进行交互并根据奖励信号进行反馈,模型逐渐优化其策略,以实现更好的性能。 LoRA的优势在于它能够处理高维度的原始输入数据,并且不需要手工设计的特征。通过使用像素级别的训练,LoRA可以学习到更丰富和复杂的特征表示,从而提高模型的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值