【思考】为什么大模型lora微调经常用在attention的Q和V层而不用在K层呢

LoRA(Low-Rank Adaptation)通常在模型微调时被用于Transformer模型的注意力(Attention)机制中,尤其是在查询(Query, Q)和值(Value, V)层,而不是键(Key, K)层。这种选择背后有几个原因,主要涉及到模型效率、特定层的作用以及对最终性能的影响。

1. 注意力机制的工作原理

在Transformer模型中,注意力机制的核心是通过计算查询(Q)与键(K)的相似度来决定值(V)的加权组合。这种机制允许模型动态地关注(或“注意”)输入序列中不同部分的信息。

2. LoRA的应用目的

LoRA通过在预训练模型的参数上添加低秩更新,实现对模型的微调,从而提高模型在特定任务上的表现,同时保持大部分预训练参数不变。这种方法旨在以较小的参数变化实现对模型行为的有效调整。

3. 为什么偏向于Q和V层

  • 参数效率:微调时关注于最能影响模型输出和性能的部分。Q层和V层直接影响到注意力权重的计算和最终的输出表示,因此在这些层上进行调整可以更直接地改变模型的行为。
  • 影响信息选择:通过调整Q层,可以影响模型如何选择信息(即,它“注意”哪些信息),而通过调整V层,可以影响一旦选择了某些信息,模型如何利用这些信息。K层主要影响的是信息的匹配方式,而在许多情况下,调整Q和V已足够引导模型关注到更有用的信息上。
  • 计算效率:虽然LoRA的目的是通过低秩更新提高参数效率,但在所有层上应用这种更新仍会增加额外的计算负担。因此,选择对最终性能影响最大的层进行调整可以在增加最小计算成本的同时获得最大的性能提升。
  • 实验和经验:实际应用中的经验和研究表明,在Q和V层上应用LoRA微调通常能够有效改善特定任务的性能。这可能是因为这些层在模型中扮演着关键角色,对输出的影响较大。

总的来说,选择在Q和V层而不是K层应用LoRA的决策主要基于提高模型微调效率和效果的考虑。这种策略旨在通过最小的参数更新实现对模型注意力机制的有效调整,从而提高在特定任务上的表现。

### 使用LoRA对大型模型进行微调 #### 安装依赖库 为了使用LoRA技术,在Keras环境中需安装必要的Python包。这通常涉及`transformers`特定于LoRA实现的软件包。 ```bash pip install transformers loralib datasets torch ``` #### 加载预训练模型与数据集 加载目标领域内的预训练Transformer模型以及准备用于微调的数据集是至关重要的第一步。这里以Hugging Face Transformers库为例展示如何操作[^1]: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` 对于数据处理部分,则可以利用`datasets`库来简化流程,比如读取CSV文件作为输入源并完成tokenization工作。 #### 应用LoRA模块到模型架构中 接下来的关键步骤是在选定上应用低秩分解矩阵\(A\)\(B\),从而形成新的可学习参数\[W'=W^{*}+BA\]。具体来说,可以选择某些权重组合(如 \(W_{q}\) \(W_{v}\)),以便更有效地调整模型性能而不显著增加额外开销[^3]。 ```python import loralib as lora for name, module in model.named_modules(): if 'layer' in name and isinstance(module, nn.Linear): # 对线性应用LoRA rank = 8 # 设置rank大小 lora.replace_linear_with_lora(module, rank=rank) lora.mark_only_lora_as_trainable(model) # 只有新增加的LoRA参数会被更新 ``` 上述代码片段展示了怎样遍历指定网络结构中的每一,并针对符合条件者替换原有全连接组件为带有自定义秩(rank)属性的新实例;同时确保除了这些新引入变量外其他所有原始权重保持冻结状态不变。 #### 训练过程配置 最后一步就是设定优化器、损失函数以及其他超参设置,启动实际训练循环直至收敛或达到预定轮次结束条件为止。值得注意的是,由于采用了稀疏化策略,因此可能需要适当降低初始学习率以获得稳定的学习效果[^2]。 ```python optimizer = AdamW(model.parameters(), lr=5e-5) criterion = CrossEntropyLoss() def train_step(input_ids, attention_mask, labels): outputs = model( input_ids=input_ids, attention_mask=attention_mask, labels=labels ) loss = criterion(outputs.logits, labels) optimizer.zero_grad() loss.backward() optimizer.step() return loss.item() ``` 通过这种方式,可以在不破坏原生大模型固有能力的基础上快速适应各种下游应用场景需求,同时也极大地减少了所需资源消耗量级。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值