【随机过程】第三章-泊松过程

泊松过程的定义

  • 泊松分布:随机变量 X X X服从参数为 λ \lambda λ的Poisson分布 X ∼ P ( λ ) X\sim P(\lambda) XP(λ), X X X的概率分布为 P ( X = k ) = e − λ λ k λ ! , k = 0 , 1 , ⋯ P(X=k)=e^{-\lambda}\frac{\lambda^k}{\lambda!},k=0,1,\cdots P(X=k)=eλλ!λk,k=0,1, E ( X ) = λ , D ( X ) = λ E(X)=\lambda, D(X)=\lambda E(X)=λ,D(X)=λ

  • 计数过程:设随机过程 { N ( t ) , t ≥ 0 } \{N(t), t\geq0\} {N(t),t0}满足: N ( t ) N(t) N(t)表示到时刻 t t t为止已发生的“事件A”的总数,且 N ( t ) N(t) N(t)满足下列条件:
    (1) N ( t ) ≥ 0 N(t)\geq0 N(t)0
    (2) N ( t ) N(t) N(t)取正整数值;
    (3) 若 s < t s<t st,则 N ( s ) ≤ N ( t ) N(s)\leq N(t) N(s)N(t)
    (4) 当 s < t s<t st时, N ( t ) − N ( s ) N(t)-N(s) N(t)N(s)等于区间 ( s , t ] (s,t] (s,t]中发生的“事件A”的次数。
    则称随机过程 { N ( t ) , t ≥ 0 } \{N(t), t\geq0\} {N(t),t0}为计数过程。

  • 泊松过程(定义1):设计数过程 { X ( t ) , t ≥ 0 } \{X(t), t\geq0\} {X(t),t0}满足下列条件
    (1) X ( 0 ) = 0 X(0)= 0 X(0)=0
    (2) X ( t ) X(t) X(t)是独立增量过程,即不重叠的时间间隔内,时间发生的次数是相互独立的;
    (3) 在任一长度为 t t t的区间中,事件A发生的次数服从参数 λ t > 0 \lambda t>0 λt0的泊松分布,即对任意 s , t > 0 s,t>0 s,t0,有
    P { X ( s + t ) − X ( s ) = n } = e − λ t ( λ t ) n n ! , ( n = 0 , 1 , 2 , ⋯   ) P\{X(s+t)-X(s)=n\}=e^{-\lambda t}\frac{(\lambda t)^n}{n!}, (n=0,1,2,\cdots) P{X(s+t)X(s)=n}=eλtn!(λt)n,(n=0,1,2,)
    则称 { X ( t ) , t ≥ 0 } \{X(t),t\geq0\} {X(t),t0}为具有参数 λ > 0 \lambda>0 λ0的泊松过程。

  • 泊松过程是平稳增量过程, λ = E [ X ( t ) ] t \lambda=\frac{E[X(t)]}{t} λ=tE[X(t)]表示单位时间内事件A发生的平均个数, λ \lambda λ为此过程的速率强度

  • 泊松过程(定义2):设计数过程 { X ( t ) , t ≥ 0 } \{X(t), t\geq0\} {X(t),t0}满足下列条件:
    (1) X ( 0 ) = 0 X(0)= 0 X(0)=0
    (2) X ( t ) X(t) X(t)是独立、平稳增量过程;
    (3) X ( t ) X(t) X(t)满足下列两式:
    P { X ( t + h ) − X ( t ) = 1 } = λ h + o ( h ) P\{X(t+h)-X(t)=1\}=\lambda h+o(h) P{X(t+h)X(t)=1}=λh+o(h)
    P { X ( t + h ) − X ( t ) ≥ 2 } = o ( h ) P\{X(t+h)-X(t)\geq2\}=o(h) P{X(t+h)X(t)2}=o(h)
    则称 { X ( t ) , t ≥ 0 } \{X(t),t\geq0\} {X(t),t0}为具有参数 λ > 0 \lambda>0 λ0的泊松过程。条件(3)说明,在充分小的时间间隔内,最多有一个事件发生,而不可能有两个或两个以上事件同时发生 。

  • 定义1与定义2是等价的 [双向蕴含]。

泊松过程的数字特征

均值 m X ( t ) = E ( X ( t ) ) = λ t 方差 σ X 2 ( t ) = D ( X ( t ) ) = λ t 相关函数 R X ( s , t ) = E ( X ( s ) X ( t ) ) = λ s ( λ t + 1 ) 协方差函数 C X ( s , t ) = R X ( s , t ) − m x ( s ) m x ( t ) = λ s 特征函数 g x ( u ) = E [ e i u X ( t ) ] = e x p { λ t ( e i u − 1 ) } \begin{aligned} & \text{均值} m_X(t)=E(X(t))=\lambda t \\ & \text{方差} \sigma^2_X(t)=D(X(t))=\lambda t \\ & \text{相关函数} R_X(s,t)=E(X(s)X(t))=\lambda s(\lambda t+1) \\ & \text{协方差函数} C_X(s,t)=R_X(s,t)-m_x(s)m_x(t)=\lambda s \\ & \text{特征函数} g_x(u)=E[e^{iuX(t)}]=exp\{\lambda t(e^{iu}-1)\} \\ \end{aligned} 均值mX(t)=E(X(t))=λt方差σX2(t)=D(X(t))=λt相关函数RX(s,t)=E(X(s)X(t))=λs(λt+1)协方差函数CX(s,t)=RX(s,t)mx(s)mx(t)=λs特征函数gx(u)=E[eiuX(t)]=exp{λt(eiu1)}

与泊松过程相关的三个分布:

时间间隔分布

  • { X ( t ) , t ≥ 0 } \{X(t),t\geq 0\} {X(t),t0}是具有参数 λ \lambda λ的泊松过程, T n ( n ≥ 1 ) T_n(n\geq 1) Tn(n1)是对应的时间间隔序列,则随机变量 T n ( n = 1 , 2 , ⋯   ) T_n(n=1,2,\cdots) Tn(n=1,2,)是独立同分布的均值 1 / λ 1/\lambda 1/λ为的指数分布。
  • 可得泊松过程(定义3):计数过程 { N ( t ) , t ≥ 0 } \{N(t),t\geq 0\} {N(t),t0}是参数为 λ \lambda λ的Poisson过程,如果每次时间发生的时间间隔 X 1 , X 2 , ⋯ X_1,X_2,\cdots X1,X2,相互独立,且服从同一参数 λ \lambda λ的指数分布。

等待时间分布

  • W n = T 1 + ⋯ + T n ∼ Γ ( n , λ ) W_n=T_1+\cdots+T_n\sim \Gamma(n,\lambda) Wn=T1++TnΓ(n,λ)

发生时刻的条件分布

  • 在已知 [ 0 , t ] [0, t] [0,t]内发生了n次事件的前提下,各次事件发生的时刻 W 1 , ⋯   , W n W_1,\cdots,W_n W1,,Wn可视为独立同分布为 [ 0 , t ] [0,t] [0,t]上的均匀分布。

泊松分布的三个推广:

非齐次泊松过程

  • 当Poisson过程的强度(速率)不再是常数,而与时间t有关时, Poisson过程被推广为非齐次泊松过程。
  • 设计数过程 { X ( t ) , t ≥ 0 } \{X(t), t\geq0\} {X(t),t0}为具有强度函数 λ ( t ) \lambda(t) λ(t)的非齐次泊松分布,满足下列条件:
    (1) X ( 0 ) = 0 X(0)= 0 X(0)=0
    (2) X ( t ) X(t) X(t)是独立增量过程;
    (3) X ( t ) X(t) X(t)满足下列两式:
    P { X ( t + h ) − X ( t ) = 1 } = λ h + o ( h ) P\{X(t+h)-X(t)=1\}=\lambda h+o(h) P{X(t+h)X(t)=1}=λh+o(h)
    P { X ( t + h ) − X ( t ) ≥ 2 } = o ( h ) P\{X(t+h)-X(t)\geq2\}=o(h) P{X(t+h)X(t)2}=o(h)
  • 非齐次泊松过程的均值函数为:
    m X ( t ) = ∫ 0 t λ ( s ) d s m_X(t)= \int\limits_{0}^{t}\lambda(s)ds mX(t)=0tλ(s)ds

复合泊松过程

  • N ( t ) , t ≥ 0 {N(t), t\geq0} N(t),t0是强度为 λ \lambda λ的泊松过程, { Y k , k = 1 , 2 , ⋯   } \{Y_k,k=1,2,\cdots\} {Yk,k=1,2,}是一列独立同分布随机变量,且与 N ( t ) , t ≥ 0 {N(t), t\geq0} N(t),t0独立,令
    X ( t ) = ∑ k = 1 N ( t ) Y k , t ≥ 0 X(t)=\sum_{k=1}^{N(t)}{Y_k}, t\geq0 X(t)=k=1N(t)Yk,t0, 则称 X ( t ) , t ≥ 0 {X(t), t\geq0} X(t),t0为复合泊松过程。

条件泊松过程

  • 设随机变量 Λ > 0 \Lambda>0 Λ>0,在 Λ = λ \Lambda=\lambda Λ=λ的条件下,计数过程 { N ( t ) , t ≥ 0 } \{N(t),t\geq0\} {N(t),t0}是参数为 λ \lambda λ的Poisson过程,则称 { N ( t ) , t ≥ 0 } \{N(t),t\geq0\} {N(t),t0}为条件Poisson过程。
  • 数字特征: E [ N ( t ) ] = t E [ Λ ] ; D [ N ( t ) ] = t 2 D [ Λ ] + t E [ Λ ] ; E[N(t)]=tE[\Lambda]; D[N(t)]=t^2D[\Lambda]+tE[\Lambda]; E[N(t)]=tE[Λ];D[N(t)]=t2D[Λ]+tE[Λ];
  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值