第四讲
1. 求取倒谱特征参数的方法:①线性预测分析②同态分析
2.同态信号处理基本原理:将非线性问题转化为线性问题。按被处理的信号来分类,有乘积同态处理和卷积同态处理。
3.同态信号处理:也称为同态滤波,它实现了将卷积关系变换为求和关系的分离处理,即解卷。
4.MEL倒谱分析着眼于人耳的听觉特性。
5. 复倒谱和倒谱的特点和关系:复倒谱要进行复对数运算,倒谱只进行实对数运算;在倒谱情况下一个序列经过正逆两个特征系统变换后,不能还原自身,计算中将序列的相位信息丢失; 卷积的倒谱等于倒谱的和;已知复倒谱,可以求出倒谱;已知倒谱,满足一定条件,可以求出复倒谱。
6. 倒谱:实验中测得的信号,激励信号与系统传递函数卷积后的信号,但在倒频谱中,由于倒频谱的解卷积作用,使得原本的卷积关系变为加法关系,这使得信号的分离变得较为简单,同时消除了传递系统函数和噪声信号的影响。
7. 复倒谱和倒谱的特点和关系:①复倒谱要进行复对数运算,倒谱只进行实对数运算②在倒谱情况下一个序列经过正逆两个特征系统变换后,不能还原自身,因为在计算中将序列的相位信息丢失了③卷积的倒谱等于倒谱的和④已知复倒谱,可以求出倒谱⑤已知倒谱,满足一定条件,可以求出复倒谱。
8. 语音信号可看做是声门激励信号和声道冲激响应两信号的卷积。
9. 声道响应序列复倒谱的性质:①双边序列②衰减序列,指数衰减③集中在原点附件,在[-25,25]之外倒谱比较小。
10. 相位卷绕:在复倒谱分析中,傅里叶变换后得到的是复数,所以取对数时进行的是复对数运算。这时存在相位多值性问题。
相位卷绕的产生原因:由于相位的多值性问题。
相位卷绕对复倒谱的影响:它会使后面由复倒谱恢复语音等运算存在不确定性而产生错误。
11. 倒谱和梅尔频率倒谱的区别:梅尔频率倒谱的频带划分是在梅尔刻度上等距划分的,它比用于正常的对数倒频谱中的线性间隔的频带更能近似人类的听觉系统。这种频率弯曲可以更好的表示声音。
12. 线性预测分析:用过去的样点值来预测现在或未来的的样点值
线性预测分析的基本思想:由于语音样点之间存在相关性,所以可以用过去的样点值来预测现在或未来的样点值。即一个语音的抽样能够用过去若干个语音抽样或他们的线性组合来逼 近。
13. 同时含有极点和零点:回归-滑动平均模型。全极点模型:回归模型。全零点模型:滑动平 均模型。语音信号处理最常用的是全极点模型。