第三讲:
1. 分帧是用可移动的有限长度窗口进行加权的方法来实现的,就是用一定的窗函数w(n)来乘s(n),从而形成加窗语音信号。
2. 窗函数的选择:
①加窗函数时,应使窗函数频谱的主瓣宽度应尽量窄,以获得高的频率分辨能力;
②旁瓣衰减应尽量大,以减少频谱泄漏(拖尾)﹔但二者矛盾需考虑折中,
③各种窗的差别主要在集中于主瓣的能量和分散在所有旁瓣的能量之比。
④对语音信号的短时分析来说,窗口的形状是至关重要的。选用不同的窗口将使时域分析参数的短时平均能量的平均结果不同。
3.汉明窗是最好的:
①汉明窗的主瓣宽度比矩形窗大1倍,即带宽约增加一倍,同时其带外衰减也比矩形窗大1倍多。
②矩形窗的谱平滑性能较好,但损失了高频成分,使波形细节丢失;而汉明窗则相反,从这一方面来看,汉明窗比矩形窗更为合适。
③汉明窗与汉宁窗对比,起始处小突变,但是副瓣平坦,很好的折中了突变小和平坦度,更适合。
4. 幅度分析的依据:是基于语音信号幅度随时间变化。清音段幅度小,其能量集中于高频段;浊音段幅度较大,其能量集中于低频段。
5. 语音信号的时域分析:短时能量及短时平均幅度分析,短时过零率分析,短时相关分析
短时能量和平均幅度函数的主要用途:①区分浊音清音,浊音能量大 ②区分声母和韵母③ 作为超音段信息。
6. 短时过零率:一帧语音中语音信号波形穿过横轴(零电平)的次数。作用:①区分浊音清音,清音具有较高的过零率,集中在高频端。②从背景噪声中找出语音信号。
7. 短时自相关函数具有以下性质:
(1)如果xn(m)是周期的(设周期为N),则自相关函数是同周期的周期函数,即Rn(k)=Rn(k+Np)。
(2)Rn(k)是偶函数,即Rn(k)=Rn(-k)。
(3)当k=0时,自相关函数具有最大值,即Rn(0)≥|Rn(k)|,并且Rn(0)等于确定性信号序列的能量或随机性序列的平均功率。
8. 相关函数的作用:
(1)区分清/浊音:浊音语音的自相关函数具有一定的周期性;清音语音的自相关函数不具有周期性,类似噪声。
(2)估计浊音语音信号的周期,即估计基音周期
9. 平均幅度差函数能够代替自相关函数进行语音分析的原理:
如果信号是完全的周期信号(设周期为Np),则相距为周期的整数倍的样点上的幅值是相等的,差值为零。
10. 语音信号的频域分析:傅里叶分析法。
11. 短时傅里叶变换也叫短时谱。特点:
(1)时变性:即是角频率的函数也是时间n的函数
(2)周期性:是关于角频率的周期函数,周期为2Π
12. 函数的功率谱=该函数自相关+傅里叶变换