目录
Jacquard V2(我们的)对比Jacquard V1的效果展示
简介
我们的Jacquard_V2数据集是一个用于机器人视觉抓取任务的数据集,它是Jacquard数据集(为便于区分,后面称为Jacquard V1)的增强版本。该数据集包含11,000个目标物体和51,000张图像。所有图像都具有RGB-D模态。注释包括多种夹爪尺寸、抓取位置和抓取角度。
有关我们Jacquard_V2数据集的更多详细信息请参考论文。
Jacquard V2论文https://arxiv.org/abs/2402.05747
我们已将论文的全部代码开源,请在github或CSDN上进行下载。
Jacquard V2与Jacquard V1的代码运行环境相同,如您已成功使用Jacquard V1数据集,请勿重复配置环境。
github仓库https://github.com/lqh12345/Jacquard_V2
请通过微软云盘或百度云盘下载Jacquard_V2数据集。微软云盘https://entuedu-my.sharepoint.com/personal/shyuan_staff_main_ntu_edu_sg/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fshyuan_staff_main_ntu_edu_sg%2FDocuments%2FJacquard_V2&ga=1百度网盘
https://pan.baidu.com/s/14SIj1jGyMdYjmKPWMI056Q?pwd=1234#list/path=%2F
我们的研究成果已经被2024年机器人领域顶会
ICRA(IEEE International Conference on Robotics and Automation)接收
Jacquard V1中存在的错误
Jacquard V1论文和数据集下载网址
为方便大家查阅对比,附上Jacquard V1的论文和数据集下载网址。
Jacquard V1论文https://arxiv.org/abs/1803.11469
Jacquard V1数据集下载网址https://jacquard.liris.cnrs.fr/
利用人在环路数据校正方法修正数据集
我们利用人在环路数据校正方法修正了Jacquard V1数据集,并将修正后的数据集命名为Jacquard V2。
Jacquard V2(我们的)对比Jacquard V1的效果展示
我们随意抽选了六张图片,来可视化Jacquard V2的改进效果。其中,绿色方框代表Jacquard V1的标注框,红色方框代表Jacquard V2新增的标注框。
第一行和第二行的图片中,Jacquard V2新增了许多不同角度,不同大小的抓取框。
第三行的图片中,Jacquard V2删除了一些错误抓取逻辑的图片。
快速使用Jacquard V2数据集
请按照本节中的说明进行操作。我们将简单介绍快速开始使用Jacquard V2数据集的步骤。
步骤一 环境配置
在使用Jacquard V2数据集之前,请确保您已安装以下依赖项。
- Python 3+
- Pyhton 所需的第三方库可以在
requirements.txt
文件里面查找
如需快速安装依赖项,请在终端里面运行如下代码
pip install -r requirements.txt
步骤二 下载数据集
环境建立成功后,下载数据集。
解压缩所有部分后,数据集的目录结构应如下所示。
数据集结构目录:
${DATASET_ROOT}
|-- JacquardV2_Dataset_0
| |-- 1a1ec1cfe633adcdebbf11b1629fc16a
| | |-- 0_1a1ec1cfe633adcdebbf11b1629fc16a_grasps.txt
| | |-- 0_1a1ec1cfe633adcdebbf11b1629fc16a_mask.png
| | |-- 0_1a1ec1cfe633adcdebbf11b1629fc16a_perfect_depth.tiff
| | |-- 0_1a1ec1cfe633adcdebbf11b1629fc16a_RGB.png
| | |-- 0_1a1ec1cfe633adcdebbf11b1629fc16a_stereo_depth.tiff
| | |-- 1_1a1ec1cfe633adcdebbf11b1629fc16a_grasps.txt
| | |-- 1_1a1ec1cfe633adcdebbf11b1629fc16a_mask.png
| | |-- 1_1a1ec1cfe633adcdebbf11b1629fc16a_perfect_depth.tiff
| | |-- 1_1a1ec1cfe633adcdebbf11b1629fc16a_RGB.png
| | |-- 1_1a1ec1cfe633adcdebbf11b1629fc16a_stereo_depth.tiff
| | |-- ...
| |-- 1a2a5a06ce083786581bb5a25b17bed6
| |-- ...
| |-- 1a3efcaaf8db9957a010c31b9816f48b
| |-- ...
|-- JacquardV2_Dataset_1
|......
|-- JacquardV2_Dataset_2
|......
|-- JacquardV2_Dataset_3
|......
步骤三 编写模型训练程序
在运行之前,请仔细编辑您的代码。
这里只提供了代码的简要示例。有关详细信息,请参考hithub仓库里的train.py。
import torch.optim as optim
from matplotlib import pyplot as plt
from torch.optim.lr_scheduler import ReduceLROnPlateau
# Please add the downloaded Jacquard V2 directory into your python project.
from jacquard_data import make_dataset, make_dataloader
dataset_root = '/data/JacquardV2_Dataset' # path will not be same in your server.
train_dataset = make_dataset(dataset_root, config)
val_dataset = make_dataset(dataset_root, config)
train_loader = make_dataloader(train_dataset, is_training=True, **config['train_loader'])
val_loader = make_dataloader(val_dataset, is_training=False, **config['validation_loader'])
# Coding
步骤四 运行程序
现在您可以开始运行程序了。下方是示例命令,具体根据自己的命名进行修改。
cd your_project_dir
// make coding
python your_script_name.py path_to_dataset_dir your_config.yaml
引用我们的论文
如果您发现Jacquard V2数据集及数据校正方法对您的研究有所帮助,请引用我们的论文。感谢您的支持!
@inproceedings{Li2024JacquardV2,
author = {Li, Qiuhao and Yuan, Shenghai},
title = {{Jacquard V2: Refining Datasets using the Human In the Loop Data Correction Method}},
booktitle = {2024 IEEE International Conference on Robotics and Automation (ICRA)},
year = {2024},
pages = {7932--7938},
doi = {10.1109/ICRA57147.2024.10611652}
}