python 谱聚类

1.sc = SpectralClustering(n_clusters=2, affinity='rbf', gamma=2.0, random_state=1000)

#谱聚类的算法理解起来就是算各种矩阵之后,选出最小的k个特征向量,一般需要做个标准化后变成一个特征矩阵,再对这个矩阵进行一次简单的聚类。 SpectralClustering(affinity=‘nearest_neighbors’,assign_labels=‘kmeans’,coef0=1, degree=3, eigen_solver=‘arpack’, eigen_tol=0.0,gamma=1.0, kernel_params=None, n_clusters=2, n_init=10, n_jobs=1,n_neighbors=10, random_state=None)

#n_clusters=2:图切割后的子图个数为2;

#使用gamma参数为2.0的RBF(affinity参数控制的);

还有很多参数,因为没有用到,这里就不写了,参考sklearn谱聚类Spectral Clustering(二)参数及算法原理_祥瑞的技术博客-CSDN博客

2.fig, ax = plt.subplots(1, 3, figsize=(20, 6), sharey=True)

#sharex,sharey:布尔值或者{'none','all','row','col'},默认:False
                    控制x(sharex)或y(sharey)轴之间的属性共享:
                        1.True或者'all':x或y轴属性将在所有子图(subplots)中共享.
                        2.False或'none':每个子图的x或y轴都是独立的部分
                        3.'row':每个子图在一个x或y轴共享行(row)
                        4.'col':每个子图在一个x或y轴共享列(column)
                    当子图在x轴有一个共享列时('col'),只有底部子图的x tick标记是可视的。
                    同理,当子图在y轴有一个共享行时('row'),只有第一列子图的y tick标记是可视的。
参考:subplots与figure函数参数解释说明以及简单的使用脚本实例_WELTest的专栏-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值