SVR(支持向量机)用法介绍

支持向量机(SVM)是一种监督学习算法,用于分类和回归。SVR是其在回归问题中的应用,通过核函数解决非线性问题。模型建立涉及数据预处理、模型训练和参数调整。常用调参方法有网格搜索和随机搜索。SVR在股票预测、房价预测等领域有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SVR介绍

支持向量机(Support Vector Machine,简称SVM)是一种常用的监督学习算法,主要用于分类和回归问题。其原理基于结构风险最小化的思想,通过在特征空间中找到一个最优的超平面来实现分类或回归任务。

支持向量机的原理包括以下几个关键概念:

  1. 分隔超平面:支持向量机试图寻找一个能够将不同类别样本完全分开的超平面。对于二分类问题,这个超平面是一个二维平面;对于多分类问题,可以通过一对一或一对多的方式构建多个二分类的超平面。

  2. 支持向量:支持向量指的是距离分隔超平面最近的样本点。它们对于确定超平面起到重要作用,因为它们决定了超平面的位置和间隔大小。

  3. 间隔最大化:支持向量机的目标是寻找一个分隔超平面,使得两个类别的支持向量到超平面的距离(即间隔)最大化。最大化间隔有助于提高模型的鲁棒性和泛化能力。

  4. 核函数:在实际应用中,样本可能存在线性不可分的情况。为了解决这个问题,支持向量机引入了核函数的概念,将样本从原始特征空间映射到高维特征空间,使得非线性可分的问题在高维空间中变为线性可分问题。常用的核函数包括线性核、多项式核和高斯径向基核等。

  5. 正则化参数:支持向量机还引入了一个正则化参数C,用于控制模型的复杂度和容错能力。较小的C值会导致更大的间隔但容错能力较低,较大的C值会导致较小的间隔但容错能力较高。

通过求解支持向量机的优化问题,可以得到一个最优的超平面来实现分类或回归任务。支持向量机在实际应用中具有良好的泛化性能和适应性,并且对于高维数据和样本量较小的情况表现优秀。

一、SVR回归介绍

SVR(Support Vector Regression)是支持向量机(SVM)在回归问题中的应用。与SVM分类模型相似,SVR也是一种非概率性算法,通过使用核函数将数据映射到高维空间,并在该空间上寻找最优的超平面与训练数据之间的间隔最大化,得到了回归模型。

与传统回归模型不同,SVR将回归问题转化为寻找一个函数逼近真实函数的过程。在实际应用中,可以使用不同的核函数和超参数来调整模型,以得到更好的拟合效果。

二、SVR回归模型建立

建立SVR回归模型的基本步骤如下:

1.数据预处理
SVR回归模型对数据的要求比较高,需要对数据进行预处理。首先需要对数据进行标准化处理,使其均值为0,方差为1。其次需要将数据进行归一化处理,将数据缩放到[0,1]范围内,以免特征之间的数据差异影响模型训练效果。

X_train = StandardScaler().fit_transform(X_train)
y_train = np.log1p(y_train) # 取对数归一化,提高拟合效果

2.模型训练
可以使用sklearn库中的SVR类来训练模型,其中需要指定核函数和超参数,例如:

clf = SVR(kernel='rbf', C=1, gamma=0.1, epsilon=0.1)
clf.fit(X_train, y_train)

其中,kernel参数是核函数类型,C是正则化参数,gamma是rbf核函数的带宽参数,epsilon是误差容忍度参数。

3.模型评估
可以使用sklearn库中的mean_squared_error函数来计算模型的均方误差(MSE),评估模型的拟合效果,例如:

y_pred = clf.predict(X_test)
mse = mean_squared_error(y_test, y_pred)

可以将mse与均值和标准差进行比较,以评估模型的拟合效果。

三、SVR回归模型调参

在SVR回归中,调参是一个非常重要的过程。常用的调参方法主要有网格搜索法和随机搜索法两种。

1.网格搜索法
网格搜索法通过遍历超参数的所有可能取值,从中选取最佳超参数的组合以获得最优的模型。可以使用sklearn库中的GridSearchCV类来进行网格搜索。

例如,可以定义参数网格,指定不同核函数、C和gamma值,以进行模型训练和评估:

param_grid = {'kernel': ['rbf'], 'C': [0.1, 1, 10], 'gamma': [0.1, 0.01, 0.001]}
grid_search = GridSearchCV(clf, param_grid, cv=5, scoring='neg_mean_squared_error')
grid_search.fit(X_train, y_train)

2.随机搜索法
与网格搜索法不同,随机搜索法是按照概率分布从指定的超参数空间中采样,从而更快地找到最优的超参数组合。可以使用sklearn库中的RandomizedSearchCV类来进行随机搜索。

例如,可以定义超参数分布,指定不同核函数、C和gamma的取值分布,以进行模型训练和评估:

param_distribs = {'kernel': ['rbf'], 'C': reciprocal(20, 200000), 'gamma': expon(scale=1.0)}
rnd_search = RandomizedSearchCV(clf, param_distributions=param_distribs, n_iter=50, cv=5, scoring='neg_mean_squared_error')
rnd_search.fit(X_train, y_train)

四、SVR回归实战应用

SVR回归可以在多个领域中进行应用,例如股票预测、房价预测、人物关系预测等领域。下面以一个简单的房价预测为例,介绍SVR回归的实际应用。

1.数据收集和处理
首先需要收集房屋样本数据,包括房屋面积、房间数、卫生间数、厨房数、地理位置等。对数据进行预处理,包括特征缩放、标准化和分类编码等。

2.模型训练和调参
可以使用sklearn库中的SVR类来训练模型,并使用网格搜索法或随机搜索法调整超参数,以获得最佳的拟合效果。

param_grid = {'kernel': ['rbf'], 'C': [0.1, 1, 10], 'gamma': [0.1, 0.01, 0.001]}
grid_search = GridSearchCV(clf, param_grid, cv=5, scoring='neg_mean_squared_error')
grid_search.fit(X_train, y_train)

3.模型测试和性能评估
使用测试数据对模型进行测试,并使用均方误差(MSE)、R方值等指标来评估模型的性能。可以使用sklearn库中的mean_squared_error和r2_score函数来进行评估:

y_pred = clf.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

五、SVR回归小结

本文从SVR回归的介绍、模型建立、调参和实战应用等方面进行了阐述。SVR回归是一种非常有用的回归模型,在多个领域中具有广泛的应用。

03-08
### 支持向量回归(SVR)算法解释与应用 #### 定义和支持向量机基础 支持向量回归(SVR),如同其分类对应物SVM一样,基于统计学习理论中的结构风险最小化原则。不同于传统方法追求经验风险最小化即尽可能拟合训练数据,SVR试图找到一条位于最大允许误差范围内的最佳拟合直线或超平面[^1]。 #### 工作原理 对于给定的数据集\(D=\{(x_1,y_1),(x_2,y_2),...,(x_n,y_n)\}\),其中\(x_i\)表示输入特征而\(y_i\)代表目标变量,在理想情况下希望预测值\(\hat{y}_i=f(x_i)\)与实际观测到的目标值之间的差异不超过预定义阈值ε。因此,当绝对偏差小于等于ε时不施加惩罚;只有超出此界限才会引入损失函数来衡量错误程度并调整模型参数直至达到最优解。这种机制使得SVR能够有效处理噪声点而不至于过度拟合特定样本特性。 #### 实现方式 Python中最常用的机器学习库scikit-learn提供了实现支持向量回归的功能,通过`svm.SVR()`类可以方便地构建和训练SVR模型[^2]。下面是一个简单的例子展示如何利用该库完成线性核的支持向量回归: ```python from sklearn.svm import SVR import numpy as np # 创建虚拟数据 X = np.sort(5 * np.random.rand(40, 1), axis=0) y = np.sin(X).ravel() # 添加一些噪音 y[::5] += 3 * (0.5 - np.random.rand(8)) # 训练SVR模型 svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) svr_lin = SVR(kernel='linear', C=1e3) svr_poly = SVR(kernel='poly', C=1e3, degree=2) # 进行预测... ``` 上述代码片段展示了不同类型的内核应用于相同数据集的效果对比实验设置过程。 #### 参数选择的重要性 正如其他复杂的机器学习技术那样,合理的选择超参数对于获得良好性能至关重要。例如C控制着对违反边界条件的容忍度大小,较大的C意味着更严格的约束从而可能导致过拟合现象发生;相反较小的C则倾向于欠拟合状态。γ决定了径向基函数(RBF)核宽度的影响力度,它同样影响泛化能力的好坏。为了寻找合适的组合方案通常需要借助交叉验证等手段来进行网格搜索或其他优化策略[^4]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

githubcurry

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值