YOLOv8+DeepSORT实现多目标追踪车辆

一、引言

在智能交通系统(ITS)的快速发展中,对车辆进行精确的检测和跟踪是实现交通监控、流量分析和安全预警的关键技术。YOLOv8和DeepSORT的结合,为解决这一挑战提供了一种创新的解决方案。

本文将详细介绍YOLOv8+DeepSORT在多目标车辆跟踪中的应用,包括车辆检测、跟踪和计数。

二、YOLOv8:革命性的车辆检测

YOLOv8是目标检测领域的最新进展,它通过单次前向传播即可预测出图像中的目标位置和类别。与传统的两阶段检测器相比,YOLOv8在速度和准确性上都有显著提升。YOLOv8的特点包括:

  • 实时性能:YOLOv8专为实时应用设计,能够在视频流中快速检测车辆。
  • 高准确性:利用最新的卷积神经网络架构,YOLOv8在各种环境下都能保持高准确率。
  • 易于集成:YOLOv8的输出可以直接用于后续的跟踪算法,无需复杂的预处理。

三、DeepSORT:先进的跟踪技术

DeepSORT是一种基于深度学习的特征表示方法,它通过提取目标的关键点特征来进行跟踪。DeepSORT的关键优势包括:

  • 特征学习:DeepSORT利用深度卷积网络学习目标的特征表示,提高了目标区分能力。
  • 多目标跟踪:DeepSORT能够有效处理视频中的多个目标,即使在目标重叠和遮挡的情况下也能保持稳定跟踪。
  • 适应性:DeepSORT能够适应目标的外观变化,包括尺度变化、旋转和变形。

四、YOLOv8+DeepSORT:无缝集成

将YOLOv8用于车辆检测,其输出的边界框和车辆特征可以作为DeepSORT的输入。这种无缝集成的方式使得YOLOv8+DeepSORT系统在多目标车辆跟踪中表现出色:

  • 快速检测与稳定跟踪:YOLOv8快速定位车辆,DeepSORT稳定跟踪每一辆车。
  • 高精度的车辆计数:系统能够准确统计通过特定区域的车辆数量,适用于交通流量分析。
  • 鲁棒性:即使在复杂的交通场景中,YOLOv8+DeepSORT也能保持稳定的跟踪性能。

五、车辆计数:智能交通管理的关键

在智能交通管理系统中,车辆计数是一个关键功能。通过YOLOv8+DeepSORT系统,我们不仅可以实时跟踪每一辆车的轨迹,还可以统计车流量,分析交通模式。这对于交通规划、拥堵管理和事故预防具有重要意义。

5.1 相关代码介绍

在这里插入图片描述

初始化跟踪器

def init_tracker():
    """
初始化目标跟踪器
"""
# 获取DeepSort的配置
    cfg_deep = get_config()
    cfg_deep.merge_from_file("deep_sort_pytorch/configs/deep_sort.yaml")
    deepsort = DeepSort(model_path=cfg_deep.DEEPSORT.REID_CKPT,
                        max_dist=cfg_deep.DEEPSORT.MAX_DIST, min_confidence=cfg_deep.DEEPSORT.MIN_CONFIDENCE,
                        nms_max_overlap=cfg_deep.DEEPSORT.NMS_MAX_OVERLAP,
                        max_iou_distance=cfg_deep.DEEPSORT.MAX_IOU_DISTANCE,
                        max_age=cfg_deep.DEEPSORT.MAX_AGE, n_init=cfg_deep.DEEPSORT.N_INIT,
                        nn_budget=cfg_deep.DEEPSORT.NN_BUDGET,
                        use_cuda=True)
    return deepsort

计算移动方向

def get_direction(point1, point2):
    """
根据两个点的相对位置计算出移动方向
"""
direction_str = ""

    # 根据两个点在y轴上的相对位置,确定是向南还是向北移动
    if point1[1] > point2[1]:
        direction_str += "South"
    elif point1[1] < point2[1]:
        direction_str += "North"
    else:
        direction_str += ""

    # 根据两个点在x轴上的相对位置,确定是向东还是向西移动
    if point1[0] > point2[0]:
        direction_str += "East"
    elif point1[0] < point2[0]:
        direction_str += "West"
    else:
        direction_str += ""

    return direction_str

绘制计数信息

# 遍历向北移动的对象计数器中的条目,并在图像的右上角显示计数信息
for idx, (key, value) in enumerate(object_counter1.items()):
    # 进入的车辆数量
    cnt_str = str(key) + ":" + str(value)
    cv2.line(img, (width - 500, 25), (width, 25), [85, 45, 255], 40)
    cv2.putText(img, f'Number of Vehicles Entering', (width - 500, 35), 0, 1, [225, 255, 255], thickness=2,
                lineType=cv2.LINE_AA)
    # 绘制分隔线
    cv2.line(img, (width - 150, 65 + (idx * 40)), (width, 65 + (idx * 40)), [85, 45, 255], 30)
    # 绘制计数信息。
    cv2.putText(img, cnt_str, (width - 150, 75 + (idx * 40)), 0, 1, [255, 255, 255], thickness=2,
                lineType=cv2.LINE_AA)

# 遍历向南移动的对象计数器中的条目,并在图像的左上角显示计数信息
for idx, (key, value) in enumerate(object_counter.items()):
    # 离开的车辆数量
    cnt_str1 = str(key) + ":" + str(value)
    cv2.line(img, (20, 25), (500, 25), [85, 45, 255], 40)
    cv2.putText(img, f'Numbers of Vehicles Leaving', (11, 35), 0, 1, [225, 255, 255], thickness=2,
                lineType=cv2.LINE_AA)
    cv2.line(img, (20, 65 + (idx * 40)), (127, 65 + (idx * 40)), [85, 45, 255], 30)
    cv2.putText(img, cnt_str1, (11, 75 + (idx * 40)), 0, 1, [225, 255, 255], thickness=2, lineType=cv2.LINE_AA)

推理效果
YOLOv8+DeepSORT多目标车辆跟踪(车辆检测+跟踪+车辆计数) 视频效果

可视化界面

在这里插入图片描述

YOLOv8DeepSORT多目标追踪中常用的两种技术,结合使用可以实现高效的多目标追踪。以下是对YOLOv8DeepSORT的介绍以及如何在C++实现多目标追踪的简要说明。 ### YOLOv8 YOLOv8(You Only Look Once version 8)是一种实时的目标检测算法,具有高精度和高速度的特点。它通过卷积神经网络(CNN)来检测图像中的目标,并返回目标的边界框和类别信息。 ### DeepSORT DeepSORT是一种多目标追踪算法,基于SORT(Simple Online and Realtime Tracking)算法进行改进。DeepSORT通过结合目标的外观信息和运动信息来实现更稳定的多目标追踪。它使用深度学习模型来提取目标的特征向量,并通过这些特征向量来进行目标匹配和身份保持。 ### C++实现 在C++实现YOLOv8DeepSORT多目标追踪需要以下几个步骤: 1. **环境配置**: - 安装C++编译器(如g++或clang++)。 - 安装OpenCV库,用于图像处理和视频读取。 - 安装深度学习框架(如TensorFlow C++ API或PyTorch C++ API),用于加载和使用YOLOv8DeepSORT模型。 2. **加载YOLOv8模型**: - 使用深度学习框架加载预训练的YOLOv8模型。 - 对输入图像进行预处理(如缩放、归一化等)。 - 通过模型进行前向传播,得到目标检测结果。 3. **实现DeepSORT**: - 使用深度学习框架加载预训练的DeepSORT特征提取模型。 - 提取目标的外观特征向量。 - 实现卡尔曼滤波器(Kalman Filter)进行目标运动预测。 - 实现匈牙利算法(Hungarian Algorithm)进行目标匹配。 4. **多目标追踪流程**: - 读取视频帧。 - 对每一帧进行目标检测。 - 提取每个目标的外观特征。 - 更新卡尔曼滤波器。 - 进行目标匹配和身份保持。 - 绘制追踪结果。 ### 示例代码 以下是一个简单的示例代码,展示了如何在C++中结合使用YOLOv8DeepSORT进行多目标追踪: ```cpp #include <opencv2/opencv.hpp> #include <tensorflow/c/c_api.h> #include <vector> // 加载YOLOv8模型并进行目标检测 std::vector<Object> DetectWithYOLOv8(TF_Session* session, const cv::Mat& frame); // 加载DeepSORT模型并提取特征 std::vector<float> ExtractFeatureWithDeepSORT(TF_Session* session, const cv::Mat& frame, const cv::Rect& bbox); // 多目标追踪类 class MultiObjectTracker { public: MultiObjectTracker(); void Update(const std::vector<Object>& detections, const cv::Mat& frame); void Draw(cv::Mat& frame); private: // 实现卡尔曼滤波器和匈牙利算法 // ... }; int main() { // 初始化TensorFlow会话 TF_Session* yolov8_session = LoadYOLOv8Model(); TF_Session* deepsort_session = LoadDeepSORTModel(); cv::VideoCapture cap("input_video.mp4"); if (!cap.isOpened()) { std::cerr << "Error opening video file" << std::endl; return -1; } MultiObjectTracker tracker; cv::Mat frame; while (cap.read(frame)) { std::vector<Object> detections = DetectWithYOLOv8(yolov8_session, frame); tracker.Update(detections, frame); tracker.Draw(frame); cv::imshow("Multi-Object Tracking", frame); if (cv::waitKey(1) == 27) break; // 按下ESC键退出 } // 释放资源 TF_DeleteSession(yolov8_session, nullptr); TF_DeleteSession(deepsort_session, nullptr); return 0; } ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

githubcurry

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值