PHM寿命预测内容定稿

立个flag

上一次更新博客已经是24天前了,最近在写大论文,没有花太多时间来构思博客的内容。想了一下,想写一篇RUL预测入门的案例和代码的教程,但是实在不知道写完什么内容比较合适,因此,想知道大家想要讨论什么内容,我们顺便一起学习一下,博客的完成可能等一段时间了。当然,由于能力有限,最好限定在以下几个范围内吧:

1. 涡扇发动机RUL预测通用核心代码讲解

2. 深度学习框架的视频资料推荐、查找项目的方法

3. 95%置信区间方法分享—DeepAR

其实DeepAR很早就有博客讲过,最近看到了近期《推进技术》网络首发一篇用DeepAR做预测的文章,仅仅用在FD001子数据集上,效果算中规中矩吧,感兴趣的话,可以自己先去搜以搜DeepAR。

4. 免费的Github开源轴承RUL预测项目

当然免费开源的其实也不多,有的话大家应该都能找到,不过能跑通的才是最重要的。

<think>好的,我需要帮助用户寻找PHM2012轴承寿命预测的Python代码示例。首先,我应该回顾用户提供的引用内容,看看是否有相关的代码信息。引用[1]提到高创新模型BiLSTM-KAN网络用于轴承寿命预测,并附有Python代码,但用户可能需要更具体的示例。引用[2]和[3]讨论了PHM2012数据的读取方法,这可能对代码实现有帮助。 接下来,用户的需求是寻找具体的Python代码例子。根据引用内容PHM2012数据集的结构分为训练集、测试集和全寿命数据,正确读取这些数据是关键的第一步。我需要确保代码示例包括数据加载、预处理、模型构建和训练等步骤。此外,引用[1]提到的BiLSTM-KAN模型可能是一个合适的模型结构,但用户可能需要更基础的示例,比如使用LSTM或卷积神经网络。 我需要检查用户提供的引用中是否有可用的代码片段。引用[2]提到了数据读取的代码截选,比如处理路径和文件加载,这部分可以整合到示例中。同,我需要确保代码符合Python的最佳实践,比如使用Keras或PyTorch框架,并包含必要的注释。 用户可能对数据预处理的具体步骤有疑问,比如频域特征提取或健康指标构建。因此,在代码示例中应包括特征提取的部分,例如计算均方根(RMS)或快速傅里叶变换(FFT)。此外,模型评估指标如RMSE和R²也需要在代码中体现,以帮助用户验证模型性能。 最后,生成的相关问题需要覆盖数据预处理、模型优化、特征工程和实际应用场景,确保用户能全面了解轴承寿命预测的各个方面。同,引用来源需要正确标注,确保信息的可靠性。</think>以下是为PHM2012轴承寿命预测提供的Python代码框架和技术要点分析: ### 一、PHM2012数据读取(基于引用[2][3]) ```python import numpy as np import pandas as pd def load_phm2012_data(file_path): """ 读取PHM2012振动信号数据 :param file_path: 数据文件路径,如"Learning_set/Bearing1_1/acc_00001.csv" :return: (间戳, 水平振动信号, 垂直振动信号) """ try: data = pd.read_csv(file_path, header=None) return data[0].values, data[1].values, data[2].values # 间戳, 水平, 垂直 except Exception as e: print(f"数据读取错误: {str(e)}") return None, None, None ``` ### 二、基础LSTM预测模型(基于引用[1]思想) ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense def build_lstm_model(input_shape): model = Sequential([ LSTM(64, input_shape=input_shape, return_sequences=True), LSTM(32), Dense(16, activation='relu'), Dense(1) # 输出剩余使用寿命(RUL) ]) model.compile(loss='mse', optimizer='adam') return model # 使用示例 model = build_lstm_model((100, 2)) # 假设输入为100间步长×2通道(水平/垂直) ``` ### 三、关键处理步骤 1. **特征工程**: ```python def extract_features(horizontal, vertical): """频域特征提取""" features = { 'rms': np.sqrt(np.mean(horizontal**2 + vertical**2)), 'kurtosis': pd.Series(horizontal).kurtosis(), 'peak2peak': np.ptp(horizontal), 'fft_max': np.max(np.abs(np.fft.fft(horizontal))[1:]) } return features ``` 2. **健康指标构建**: ```math HI(t) = \frac{HI_{raw}(t) - \mu_{HI}}{\sigma_{HI}} \quad \text{其中} \ HI_{raw} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}x_i^2} $$ ### 四、模型训练流程 ```python # 数据预处理 def create_sequences(data, window_size=100): sequences = [] for i in range(len(data)-window_size): seq = data[i:i+window_size] label = data[i+window_size] sequences.append((seq, label)) return sequences # 训练示例 train_data = [...] # 包含特征序列的数组 train_seq = create_sequences(train_data) model.fit(np.array([s[0] for s in train_seq]), np.array([s[1] for s in train_seq]), epochs=50, batch_size=32) ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风筝不是风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值