《Nature Aging》:皮肤衰老的分子机制

研究发现,随着年龄增长,皮肤中的IL-17细胞因子表达增加,导致炎症和皮肤衰老。通过阻断IL-17信号,可以减缓皮肤衰老过程,这为抗衰老疗法提供了新方向。实验显示,在老年小鼠中抑制IL-17A/F可降低炎症水平并改善皮肤状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一个人衰老最直接的体现就是皮肤衰老。一个成年人平均有约 6 磅的皮肤覆盖 18 平方英尺,从器官的角度来讲,皮肤是身体最大的器官。人体的皮肤一般从30-40岁以后即随着年龄的增长而逐渐衰老;大约在40~50岁后逐渐出现比较明显的衰老变化;进入老年之后,人的皮肤从功能到外观都迅速衰退。因此,一个人皮肤的状态,是他人衡量其年龄的一个主要外在指标。但是,我们的皮肤为什么会衰老呢?要回答这个问题,我们首先要了解皮肤的结构与功能。

人体的皮肤可分为3层:最外层是表皮,具有防护,包含制造角蛋白的细胞和赋予皮肤颜色的黑色素细胞。表皮中的其他细胞让我们有触觉并提供免疫力来抵抗细菌和其他病菌等入侵者。底层是皮下组织,包含脂肪细胞或脂肪组织,可以隔离身体并帮助保存热量。表皮和皮下组织之间是真皮,包含赋予皮肤强度、支撑和柔韧性的细胞。真皮层不仅具有感觉感受器让身体接收来自外界的刺激并感受压力、疼痛和温度,还具有血管网络为皮肤提供营养,并清除废物。真皮层的皮脂腺产生油脂,防止皮肤干燥。来自皮脂腺的油脂还有助于软化头发并杀死皮肤毛孔中的细菌。


皮肤的组织结构由外往里可分为三层,即表皮、真皮和皮下组织。 

随着年龄的增长,表皮的再生能力和屏障功能逐渐下降,真皮中的细胞则会失去强度和柔韧性,从而导致皮肤失去年轻的外观。真皮层具有感觉感受器,可让身体接收来自外界的刺激并感受压力、疼痛和温度。血管网络为皮肤提供营养,并清除废物。皮脂腺产生油脂,防止皮肤干燥。 来自皮脂腺的油脂还有助于软化头发并杀死皮肤毛孔中的细菌。这些腺体覆盖全身,除了手掌和脚底。之前的多项研究表明慢性炎症与皮肤老化紧密相关。然而,炎症是如何影响组织衰老的仍待研究。

近日,来自巴塞罗那生物医学研究所 (IRB Barcelona)与西班牙国家基因组分析中心 (CNAG) 的科学家们在《Nature Aging》上合作发表题为“靶向淋巴衍生的 IL-17 信号延缓皮肤衰老(Targeting lymphoid-derived IL-17 signaling to delay skin aging)”的论文。他们的研究表明,IL-17 参与与衰老相关的各种功能,阻断这种蛋白质的功能可以减缓与皮肤老化相关的各种缺陷的出现。这一发现从而为治疗某些症状或促进手术后皮肤恢复开辟了新的可能性。

衰老的皮肤中淋巴细胞比例上调

为探究衰老的皮肤与年轻皮肤细胞构成及基因表达的不同之处,研究人员通过单细胞RNA测序(scRNA-Seq)分析了小鼠背部皮肤非上皮细胞(EpCAM-)的基因表达情况,并将年龄在80-90周的老年小鼠与年龄在17-25周的成年小鼠的数据进行对比。基于细胞表面是否表达CD45,他们将检测的细胞分为非免疫细胞(CD45-)和免疫细胞(CD45+)两大类。

由于在非免疫细胞中未检测到衰老相关生物标志物转录水平和蛋白表达水平的变化,研究人员主要聚焦免疫细胞,特别呈显著年龄相关变化的CD4+TH 细胞, γδ T 细胞和先天性淋巴细胞等淋巴细胞。与成年小鼠相比,这些淋巴细胞的占比在老年小鼠中显著增高。

实验人员通过 10X scRNA-seq 来表征真皮细胞。

衰老的皮层中IL-17等促炎细胞因子表达水平上调

那么,这些淋巴细胞在基因表达水平上有怎样的变化呢?本文作者发现衰老皮层中多种促炎细胞因子的基因转录水平呈上调趋势。其中,白细胞介素17(IL-17)家族的成员IL-17A和IL-17F在衰老小鼠CD4+TH 细胞, γδ T 细胞和固有性淋巴样细胞(ILC)中基因转录水平的上调最为显著。进一步实验表明衰老小鼠背部皮层中IL-17A+细胞的比例高于成年小鼠。

这个趋势是否适用于人类呢?利用荧光原位杂交(FISH)技术,研究人员发现与成年人皮层相比,IL-17A 和IL-17F的阳性细胞在衰老的人类皮肤中比例更高。因此,IL-17A/F的上调也适用于人类。

实验显示淋巴免疫细胞亚群显示增加的 IL-17A/F 相关信号

抑制IL-17A/F可以延缓皮肤衰老

为研究IL-17A/F的上调是否会通过促进炎症状态进而导致皮肤衰老,本文作者利用IL-17A和IL-17F的抗体来处理老年小鼠。处理12周后,他们发现老年小鼠皮肤的炎症水平显著下降。他们还测量了小鼠的角化层厚度以评估皮肤衰老层度。结果表明抑制IL-17A/F可以降低角化层厚度,让皮肤状态变得更年轻。

IL-17A/F的上调又是如何调控炎症反应的呢?利用染色质免疫沉淀-测序(CHIP-Seq),研究人员发现NF-kB信号参与了表皮衰老相关的炎症反应的调控。

在衰老小鼠中阻断 IL-17A/F 功能会导致与年龄相关的皮肤特征延迟

小结与展望

总而言之,本文的研究显示出IL-17 蛋白通过促进炎症状态,进而导致皮肤衰老。抑制IL-17蛋白的表达,有可能延缓皮肤的衰老,从而让皮肤状态年轻。

“我们的结果表明 IL-17 参与与衰老相关的各种功能。 我们观察到,阻断这种蛋白质的功能可以减缓与皮肤老化相关的各种缺陷的出现。 例如,这一发现为治疗某些症状或促进手术后皮肤恢复开辟了新的可能性。”该文章的通讯作者Aznar Benitah博士总结道。

该论文的第一作者 Paloma Solá 博士说,“衰老与轻微但持续的炎症有关,在皮肤中,其特征是 IL-17 的表达显著增加进而导致皮肤退化”。

本文的作者之一IRB Barcelona 的副研究员 Guiomar Solanas 博士说,“IL-17 蛋白对于重要的身体功能至关重要,例如抵御微生物和促进伤口愈合,因此永久阻断它并不是一种选择。我们观察到的是,对它的暂时性抑制在治疗上有应用前景。” 

研究人员未来的工作将集中于阐明与皮肤炎症状态相关的衰老过程,以及这些过程如何与 IL-17 相关联。 该团队还将解决 IL-17 是否参与其他组织和器官的老化和退化。

参考文献:

P Solá et al. Targeting lymphoid-derived IL-17 signaling to delay skin aging. Nat Aging, 3: 688-704 (2023). (https://www.nature.com/articles/s43587-023-00431-z)

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值