复杂截面抗扭惯矩计算

基于有限元方法梁单元复杂截面抗扭惯矩计算研究

这是一篇来自中国桥梁网的文章,无法下载,故将自己理解的原理概述在这里

1、概念图

在这里插入图片描述在这里插入图片描述在这里插入图片描述

2、计算方法

利用有限元软件,建立悬臂梁实体单元模型,进行静力加载计算,再利用扭转角,根据下面的式子进行计算抗扭惯性矩。
在这里插入图片描述

3、还有一些有限元法的文章

列举如下:
《非规则形状截面抗扭断面系数计算方法的比较》
《采用有限单元法计算梁任意形状截面特性》
《任意截面抗扭惯性矩及其剪应力计算方法研究》

### 计算复杂截面的方 对于复杂形状截面,通常采用数值积分计算。具体来说,在编程或工程软件中实现这一功能时,可以考虑以下几种方式: #### 方一:分段解析求解 如果能够将复杂截面分解成若干简单几何图形,则可以通过查表获得这些基本图形的公式并累加得到整个截面的结果[^1]。 ```python def calculate_moment_of_inertia(simple_shapes): total_Ixx, total_Iyy = 0, 0 for shape in simple_shapes: Ixx, Iyy = get_basic_shape_properties(shape['type'], shape['dimensions']) # 平行轴定理调整到共同参考点 dx, dy = distance_from_reference_point(shape['centroid']) area = compute_area(shape) total_Ixx += (Ixx + area * dy ** 2) total_Iyy += (Iyy + area * dx ** 2) return {'Ix': total_Ixx, 'Iy': total_Iyy} ``` #### 方二:离散化处理 当无有效分割为标准几何体时,可利用有限元分析原理对物体表面进行网格划分,并通过遍历所有节点完成近似计算。 ```matlab function [Ix, Iy] = discrete_cross_section(points) % points 是由 N*2 的阵表示的一系列坐标点构成闭合轮廓线 N = size(points, 1); Ix = 0; Iy = 0; for i=1:N-1 x1 = points(i, 1); y1 = points(i, 2); x2 = points(i+1, 1); y2 = points(i+1, 2); % 使用梯形则估算面积微元 dA 和对应的平方距离 r^2*dA dA = 0.5*(x1*y2-x2*y1); cx = mean([x1,x2]); cy = mean([y1,y2]); Ix = Ix + dA * cy ^ 2; Iy = Iy + dA * cx ^ 2; end ``` 这两种方各有优劣,前者适用于具有明显规律性的结构设计;后者则更灵活通用,尤其适合不规则边界条件下的精确模拟。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值