凸优化基础
1、计算几何是研究什么的?
2、计算几何理论中(或凸集中)过两点的一条直线的表达式,是如何描述的?与初中数学中那些直线方程有什么差异?有什么好处?
3、凸集是什么? 直线是凸集吗?是仿射集吗?
4、什么是“凸函数”定义?什么是Hessen矩阵? 如何判别一个函数是凸函数?f(x)=x^3 函数是凸函数吗?
5、什么是“凸规划”?如何判别一个规划问题是凸规划问题。举例说明?
6、三维空间中的一个平面,如何表达?
7、更高维度的“超平面”,如何表达?
一、计算几何
1、计算几何是研究什么的
计算几何研究的对象是几何图形。早期人们对于图像的研究一般都是先建立坐标系,把图形转换成函数,然后用插值和逼近的数学方法,特别是用样条函数作为工具来分析图形,取得了可喜的成功。然而,这些方法过多地依赖于坐标系的选取,缺乏几何不变性,特别是用来解决某些大挠度曲线及曲线的奇异点等问题时,有一定的局限性。
2、计算几何理论中过两点的一条直线的表达式,是如何描述的
假设两个点不相同:
x 1 ! = x 2 x_1 != x_2 x1!=x2
那么就有直线方程:
y = θ x 1 + ( 1 − θ ) x 2 y = θx_1 + (1−θ)x_2 y=θx1+(1−θ)x2
3、与初中数学中那些直线方程有什么差异?有什么好处?
计算几何与平面几何(初高中学习)的区别就是维度的不一样,计算几何在平面的基础上添加了角度的维度,这意味着计算的复杂性提高了,但是计算的结果更加的广泛,更加的精确,更容易全方位的表达一条直线。
二、凸集
1、凸集是什么
在凸几何中,凸集是在凸组合下闭合的仿射空间的子集。更具体地说,在欧氏空间中,凸集是对于集合内的每一对点,连接该对点的直线段上的每个点也在该集合内。例如,立方体是凸集,但是任何中空的或具有凹痕的例如月牙形都不是凸集。
特别的,凸集,实数R上(或复数C上)的向量空间中,如果集合S中任两点的连线上的点都在S内,则称集合S为凸集。
凸集的数学定义:
2、仿射集
仿射集亦称仿射流形、线性流形、仿射簇,是实线性空间中的一类子集。非空间射集 M 的维数定义为上述子空间 L 的维数。空集的维数定义为-1。维数分别为0、1,以及2的仿射集为点、直线和平面。 R n ℝ^n Rn中n-1维点仿射集称为超平面。
3、凸函数
凸函数是数学函数的一类特征。凸函数就是一个定义在某个向量空间的凸子集C(区间)上的实值函数。
对于一元函数f(xf(x),如果对于任意tϵ[0,1]tϵ[0,1]均满足:f(tx1+(1−t)x2)≤tf(x1)+(1−t)f(x2)f(tx1+(1−t)x2)≤tf(x1)+(1−t)f(x2),则称f(x)f(x)为凸函数(convex function)
如果对于任意tϵ(0,1)tϵ(0,1)均满足:f(tx1+(1−t)x2)<tf(x1)+(1−t)f(x2)f(tx1+(1−t)x2)<tf(x1)+(1−t)f(x2),则称f(x)f(x)为严格凸函数(convex function)
凸函数的数学定义:
4、Hessen矩阵
黑塞矩阵(Hessian Matrix),又译作海森矩阵、海瑟矩阵、海塞矩阵等,是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率。黑塞矩阵最早于19世纪由德国数学家Ludwig Otto Hesse提出,并以其名字命名。黑塞矩阵常用于牛顿法解决优化问题,利用黑塞矩阵可判定多元函数的极值问题。在工程实际问题的优化设计中,所列的目标函数往往很复杂,为了使问题简化,常常将目标函数在某点邻域展开成泰勒多项式来逼近原函数,此时函数在某点泰勒展开式的矩阵形式中会涉及到黑塞矩阵。
在工程实际问题的优化设计中,所列的目标函数往往很复杂,为了使问题简化,常常将目标函数在某点邻域展开成泰勒多项式来逼近原函数。
5、如何判别一个函数是凸函数
1).对于一元函数f(x)f(x),我们可以通过其二阶导数f′′(x)f″(x) 的符号来判断。如果函数的二阶导数总是非负,即f′′(x)≥0f″(x)≥0 ,则f(x)f(x)是凸函数
2).对于多元函数f(X)f(X),我们可以通过其Hessian矩阵(Hessian矩阵是由多元函数的二阶导数组成的方阵)的正定性来判断。如果Hessian矩阵是半正定矩阵,则是f(X)f(X)凸函数