凸优化基础之计算几何、凸集、凸函数、凸规划

本文深入探讨计算几何的基础概念,如线段、平面和超平面的表达,以及如何判断点与线段的关系。接着,文章介绍了凸集的定义,包括三维空间中的平面和超平面表示,并探讨了凸函数和凸规划的判别方法。
摘要由CSDN通过智能技术生成

一、计算几何

1.什么是计算几何

计算几何是计算机理论科学的一个重要分支.自20世纪70年代末从算法设计与分析中独立出来起,不到30年,该学科已经有了巨大的发展,不仅产生了一系列重要的理论成果,也在众多实际领域中得到了广泛的应用.
计算几何基本概念和常用算法包括如下内容:
矢量的概念
矢量加减法
矢量叉积
折线段的拐向判断
判断点是否在线段上
判断两线段是否相交
判断线段和直线是否相交
判断矩形是否包含点
判断线段、折线、多边形是否在矩形中
判断矩形是否在矩形中
判断圆是否在矩形中
判断点是否在多边形中
判断线段是否在多边形内
判断折线是否在多边形内
判断多边形是否在多边形内
判断矩形是否在多边形内
判断圆是否在多边形内
判断点是否在圆内
判断线段、折线、矩形、多边形是否在圆内
判断圆是否在圆内
计算点到线段的最近点
计算点到折线、矩形、多边形的最近点
计算点到圆的最近距离及交点坐标
计算两条共线的线段的交点
计算线段或直线与线段的交点
求线段或直线与折线、矩形、多边形的交点
求线段或直线与圆的交点
凸包的概念
凸包的求法

想要深入了解这些内容可参考这个博客

2.计算几何理论中过两点的一条直线的表达式,是如何描述的?

设点为Q,线段为P1P2 ,判断点Q在该线段上的依据是:( Q - P1 ) × ( P2 - P1 ) = 0 且 Q 在以 P1,P2为对角顶点的矩形内。前者保证Q点在直线P1P2上,后者是保证Q点不在线段P1P2的延长线或反向延长线上,对于这一步骤的判断可以用以下过程实现:

ON-SEGMENT(pi,pj,pk)

if min(xi,xj) <= xk <= max(xi,xj) and min(yi,yj) <= yk <= max(yi,yj)

then return true;

else return false;

特别要注意的是,由于需要考虑水平线段和垂直线段两种特殊情况,min(xi,xj)<=xk<=max(xi,xj)和min(yi,yj)<=yk<=max(yi,yj)两个条件必须同时满足才能返回真值。

二、凸集

1.什么是凸集

集合C中任两点之间的点仍在C中,称C为凸集。
即x.x∈C,成+(1-0)xq∈C, 其中θ∈[:1]b 显然仿射集是凸集。
凸组合 ∑ θ i X i \sum^{}_{}\theta_iX_i θiXi,其中 ∑ θ i \sum^{}_{}θ_i θi,的值为1。
集合C是凸集<=>C包含其任意点的凸组合
凸包,C为任意集合,
c n o v C = ∑ θ i X i ∣ X i ∈ C z , θ i ≥ 0 , θ i = 1 cnov C= {\sum^{}_{}\theta_iX_i |X_i\in C_z, \theta_i \geq0 ,\theta_i=1 } cnovC=θiXiXiCz,θi0,θi=1
凸包是包含集合C的最小的凸集

直线的表示: y = θ x 1 + ( 1 − θ ) x 2 , θ ∈ R , y= \theta x_1 + (1-\theta)x_2, \theta \in R, y=θx1+(1θ)x2,θR,
直线是仿射集,而仿射集一定是凸集,所以直线是凸集。

2.如何表达三维空间中的一个平面

三维空间中的平面由两个量确定:
① 一个法向量(垂直于该平面的向量)
② 一个已知点(位于该平面上的一个点)
平面法向量为: n → = { 1 2 3 } ⊤ (3) \overrightarrow{n}= \begin{Bmatrix} 1 & 2 & 3 \end{Bmatrix} \tag{3}\top n ={ 12

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值