pytorch-20_1 LSTM在股价数据集上的预测实战

LSTM在股价数据集上的预测实战

  • 使用完整的JPX赛题数据,并向大家提供完整的lstm流程。

导包

import numpy as np #数据处理
import pandas as pd #数据处理
import matplotlib as mlp
import matplotlib.pyplot as plt #绘图
from sklearn.preprocessing import MinMaxScaler #·数据预处理
from sklearn.metrics import mean_squared_error
import torch 
import torch.nn as nn #导入pytorch中的基本类
from torch.autograd import Variable
from torch.utils.data import DataLoader, TensorDataset
import torch.optim as optim
import torch.utils.data as data
# typing 模块提供了一些类型,辅助函数中的参数类型定义
from typing import Union,List,Tuple,Iterable
from sklearn.preprocessing import LabelEncoder,MinMaxScaler
from decimal import ROUND_HALF_UP, Decimal

一、数据加载与处理

# 一、数据加载与处理
# 1、查看数据集信息
stock= pd.read_csv('stock_prices.csv')          # (2332531,12) 
stock_list = pd.read_csv('stock_list.csv')      # (4417,16)

stock["SecuritiesCode"].unique().__len__()      #2000支股票

# 2、为了效率我们抽取其中的10支股票
selected_codes = stock['SecuritiesCode'].drop_duplicates().sample(n=10)
stock = stock[stock['SecuritiesCode'].isin(selected_codes)]     # (9833,12)
stock["SecuritiesCode"].unique().__len__()      #只有10支股票了

stock.isnull().sum() #查看缺失值

# 3、预处理数据集
#将Target名字修改为Sharpe Ratio
stock.rename(columns={'Target': 'Sharpe Ratio'}, inplace=True)

#将Close列添加到最后
close_col = stock.pop('Close')
stock.loc[:,'Close'] = close_col

#填补Dividend缺失值、删除具有缺失值的行
stock["ExpectedDividend"] = stock["ExpectedDividend"].fillna(0)
stock.dropna(inplace=True)

#恢复索引
stock.index = range(stock.shape[0])

二、数据分割与数据重组

# 二、数据分割与数据重组
# 1、数据分割
train_size = int(len(stock) * 0.67)
test_size = len(stock) - train_size
train, test = stock[:train_size], stock[train_size:] # train (6580,12) test(3242,12)

# 2、带标签滑窗
def create_multivariate_dataset_2(dataset, window_size, pred_len):  # 
    """
    将多变量时间序列转变为能够用于训练和预测的数据【带标签的滑窗】
    
    参数:
        dataset: DataFrame,其中包含特征和标签,特征从索引3开始,最后一列是标签
        window_size: 滑窗的窗口大小
        pred_len:多步预测的预测范围/预测步长
    """
    X, y, y_indices = [], [], []
    for i in range(len(dataset) - window_size - pred_len + 1):                      # (len-ws-pl+1) --> (6580-30-5+1) = 6546
        # 选取从第4列到最后一列的特征和标签
        feature_and_label = dataset.iloc[i:i + window_size, 3:].values              # (ws,fs_la) --> (30,9)
        # 下一个时间点的标签作为目标
        target = dataset.iloc[(i + window_size):(i + window_size + pred_len), -1]   # pred_len --> 5
        # 记录本窗口中要预测的标签的时间点
        target_indices = list(range(i + window_size, i + window_size + pred_len))   # pl*(len-ws-pl+1) --> 5*6546 = 32730 

        X.append(feature_and_label)
        y.append(target)
        #将每个标签的索引添加到y_indices列表中
        y_indices.extend(target_indices)
    
    X = torch.FloatTensor(np.array(X, dtype=np.float32))
    y = torch.FloatTensor(np.array(y, dtype=np.float32))
    
    return X, y, y_indices

# 3、数据重组
window_size = 30        #窗口大小
pred_len = 5            #多步预测的步数

X_train_2, y_train_2, y_train_indices = create_multivariate_dataset_2(train, window_size, pred_len)     # x(6546,30,9) y(6546,5) (32730,)
X_test_2, y_test_2, y_test_indices = create_multivariate_dataset_2(test, window_size, pred_len)         # x(3208,30,9) y(3208,5) (16040,)

三、网络架构与参数设置

# 三、网络架构与参数设置
# 1、定义架构
class MyLSTM(nn.Module):
    def __init__(self,input_dim, seq_length, output_size, hidden_size, num_layers):
        super().__init__()
        self.lstm = nn.LSTM(input_size=input_dim, hidden_size=hidden_size, num_layers=num_layers, batch_first=True)
        self.linear = nn.Linear(hidden_size, output_size)
    
    def forward(self, x):
        x, _ = self.lstm(x)
        #现在我要的是最后一个时间步,而不是全部时间步了
        x = self.linear(x[:,-1,:])
        return x

# 2、参数设置
input_size = 9          #输入特征的维度
hidden_size = 20        #LSTM隐藏状态的维度
n_epochs = 2000         #迭代epoch
learning_rate = 0.001   #学习率
num_layers = 1          #隐藏层的层数
output_size = 5

#设置GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)

# 加载数据,将数据分批次 
loader = data.DataLoader(data.TensorDataset(X_train_2, y_train_2), shuffle=True, batch_size=8) 

# 3、实例化模型
model = MyLSTM(input_size, window_size, pred_len,hidden_size, num_layers).to(device)
optimizer = optim.Adam(model.parameters(),lr=learning_rate) #定义优化器
loss_fn = nn.MSELoss() #定义损失函数
loader = data.DataLoader(data.TensorDataset(X_train_2, y_train_2)
                         #每个表单内部是保持时间顺序的即可,表单与表单之间可以shuffle
                         , shuffle=True
                         , batch_size=8) #将数据分批次

四、实际训练流程

# 四、实际训练流程
# 初始化早停参数
early_stopping_patience = 3  # 设置容忍的epoch数,即在这么多epoch后如果没有改进就停止
early_stopping_counter = 0  # 用于跟踪没有改进的epoch数
best_train_rmse = float('inf')  # 初始化最佳的训练RMSE

train_losses = []
test_losses = []

for epoch in range(n_epochs):
    model.train()
    for X_batch, y_batch in loader:
        y_pred = model(X_batch.to(device))
        loss = loss_fn(y_pred, y_batch.to(device))
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
    #验证与打印
    if epoch % 10 == 0:
        model.eval()
        with torch.no_grad():
            y_pred = model(X_train_2.to(device)).cpu()
            train_rmse = np.sqrt(loss_fn(y_pred, y_train_2))
            y_pred = model(X_test_2.to(device)).cpu()
            test_rmse = np.sqrt(loss_fn(y_pred, y_test_2))
        print("Epoch %d: train RMSE %.4f, test RMSE %.4f" % (epoch, train_rmse, test_rmse))
        
        # 将当前epoch的损失添加到列表中
        train_losses.append(train_rmse)
        test_losses.append(test_rmse)
    
        # 早停检查
        if  train_rmse < best_train_rmse:
            best_train_rmse = train_rmse
            early_stopping_counter = 0  # 重置计数器
        else:
            early_stopping_counter += 1  # 增加计数器
            if early_stopping_counter >= early_stopping_patience:
                print(f"Early stopping triggered after epoch {epoch}. Training RMSE did not decrease for {early_stopping_patience} consecutive epochs.")
                break  # 跳出训练循环

结果显示:

Epoch 0: train RMSE 1470.9308, test RMSE 1692.0652
Epoch 5: train RMSE 1415.7896, test RMSE 1639.1147
Epoch 10: train RMSE 1364.8196, test RMSE 1590.2207
......
Epoch 100: train RMSE 654.3458, test RMSE 904.7958
Epoch 105: train RMSE 638.2536, test RMSE 886.3511
Epoch 110: train RMSE 625.7336, test RMSE 870.9800
......
Epoch 200: train RMSE 598.3364, test RMSE 820.4078
Epoch 205: train RMSE 598.3354, test RMSE 820.3406
Epoch 210: train RMSE 598.3349, test RMSE 820.2874
......
Epoch 260: train RMSE 598.3341, test RMSE 820.1312
Epoch 265: train RMSE 598.3341, test RMSE 820.1294
Early stopping triggered after epoch 265. Training RMSE did not decrease for 3 consecutive epochs.

五、可视化结果

# 五、可视化结果
# 1、损失曲线
plt.figure(figsize=(10, 5))
plt.plot(train_losses, label='Train RMSE')
plt.plot(test_losses, label='Test RMSE')
plt.xlabel('Epochs')
plt.ylabel('RMSE')
plt.title('Train and Test RMSE Over Epochs')
plt.legend()
plt.show()

在这里插入图片描述
结果分析:预测效果不是很好,考虑进行数据预处理和特征工程

【扩展】股票数据的数据预处理与特征工程(后续更新~)

  • 6
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白白白飘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值