机器学习概述
通过数据(特征值)训练模型以预测未来(目标值)
人工智能的统计学习方法=机器学习
机器学习的好方法:深度神经网络学习
机器学习是人工智能的一个实现途径、深度学习是实现机器学习的一种技术
机器学习算法是核心,数据与计算是基础
作用:传统预测、图像识别、自然语言处理
名词
机器学习:
数据集:特征值+目标值
pandas数据清洗、数据处理
算法分类
监督学习
分类问题
目标值:类别(猫狗)
k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归
回归问题
目标值:连续型的数据(房价)
线性回归、岭回归
无监督学习
目标值:无
聚类 k-means
开发流程
-
获取数据
-
数据处理(处理缺失值、类型、错误值)
-
特征工程(能算法使用的数据)
-
机器学习算法训练-模型(预估器+模型选择与调优)
-
模型评估
-
应用
机器学习框架
- scikit learn传统机器学习框架sklearn
- tf
- pytorch深度学习框架
- theano
- caffe2
- chainer
资料介绍
机器学习 -”西瓜书”- 周志华
统计学习方法 - 李航
深度学习 - “花书”
实战类书籍
机器学习库与框架