机器学习入门概述

机器学习概述

通过数据特征值)训练模型预测未来(目标值

人工智能的统计学习方法=机器学习

机器学习的好方法:深度神经网络学习

机器学习是人工智能的一个实现途径、深度学习是实现机器学习的一种技术

机器学习算法是核心,数据与计算是基础

作用:传统预测、图像识别、自然语言处理

名词

机器学习

数据集:特征值+目标值

pandas数据清洗、数据处理

算法分类

监督学习

分类问题

目标值:类别(猫狗)
k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归

回归问题

目标值:连续型的数据(房价)

线性回归、岭回归

无监督学习

目标值:无

聚类 k-means

开发流程

  1. 获取数据

  2. 数据处理(处理缺失值、类型、错误值)

  3. 特征工程(能算法使用的数据)

  4. 机器学习算法训练-模型(预估器+模型选择与调优)

  5. 模型评估

  6. 应用

机器学习框架

  • scikit learn传统机器学习框架sklearn
  • tf
  • pytorch深度学习框架
  • theano
  • caffe2
  • chainer

资料介绍

机器学习 -”西瓜书”- 周志华

统计学习方法 - 李航

深度学习 - “花书”

实战类书籍

机器学习库与框架

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值