3.深度学习(二)

文章目录

3.5 Batch_Size

3.5.1 为什么需要 Batch_Size?

Batch的选择,首先决定的是下降的方向。

如果数据集比较小,可采用全数据集的形式,好处是:

  1. 由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。
  2. 由于不同权重的梯度值差别巨大,因此选取一个全局的学习率很困难。 Full Batch Learning 可以使用 Rprop 只基于梯度符号并且针对性单独更新各权值。

对于更大的数据集,假如采用全数据集的形式,坏处是:

  1. 随着数据集的海量增长和内存限制,一次性载入所有的数据进来变得越来越不可行。
  2. 以 Rprop 的方式迭代,会由于各个 Batch 之间的采样差异性,各次梯度修正值相互抵消,无法修正。这才有了后来 RMSProp 的妥协方案。

3.5.2 Batch_Size 值的选择

​ 假如每次只训练一个样本,即 Batch_Size = 1。线性神经元在均方误差代价函数的错误面是一个抛物面,横截面是椭圆。对于多层神经元、非线性网络,在局部依然近似是抛物面。此时,每次修正方向以各自样本的梯度方向修正,横冲直撞各自为政,难以达到收敛。

​ 既然 Batch_Size 为全数据集或者Batch_Size = 1都有各自缺点,可不可以选择一个适中的Batch_Size值呢?

​ 此时,可采用批梯度下降法(Mini-batches Learning)。因为如果数据集足够充分,那么用一半(甚至少得多)的数据训练算出来的梯度与用全部数据训练出来的梯度是几乎一样的。

3.5.3 在合理范围内,增大Batch_Size有何好处?

  1. 内存利用率提高了,大矩阵乘法的并行化效率提高。
  2. 跑完一次 epoch(全数据集)所需的迭代次数减少,对于相同数据量的处理速度进一步加快。
  3. 在一定范围内,一般来说 Batch_Size 越大,其确定的下降方向越准,引起训练震荡越小。

3.5.4 盲目增大 Batch_Size 有何坏处?

  1. 内存利用率提高了,但是内存容量可能撑不住了。
  2. 跑完一次 epoch(全数据集)所需的迭代次数减少,要想达到相同的精度,其所花费的时间大大增加了,从而对参数的修正也就显得更加缓慢。
  3. Batch_Size 增大到一定程度,其确定的下降方向已经基本不再变化。

3.5.5 调节 Batch_Size 对训练效果影响到底如何?

  1. Batch_Size 太小,模型表现效果极其糟糕(error飙升)。
  2. 随着 Batch_Size 增大,处理相同数据量的速度越快。
  3. 随着 Batch_Size 增大,达到相同精度所需要的 epoch 数量越来越多。
  4. 由于上述两种因素的矛盾, Batch_Size 增大到某个时候,达到时间上的最优。
  5. 由于最终收敛精度会陷入不同的局部极值,因此 Batch_Size 增大到某些时候,达到最终收敛精度上的最优。

3.6 归一化

3.6.1 归一化含义?

  1. 归纳统一样本的统计分布性。归一化在 0 − 1 0-1 01 之间是统计的概率分布,归一化在 − 1 − − + 1 -1--+1 1+1 之间是统计的坐标分布。

  2. 无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测,且 sigmoid 函数的取值是 0 到 1 之间的,网络最后一个节点的输出也是如此,所以经常要对样本的输出归一化处理。

  3. 归一化是统一在 0 − 1 0-1 01 之间的统计概率分布,当所有样本的输入信号都为正值时,与第一隐含层神经元相连的权值只能同时增加或减小,从而导致学习速度很慢。

  4. 另外在数据中常存在奇异样本数据,奇异样本数据存在所引起的网络训练时间增加,并可能引起网络无法收敛。为了避免出现这种情况及后面数据处理的方便,加快网络学习速度,可以对输入信号进行归一化,使得所有样本的输入信号其均值接近于 0 或与其均方差相比很小。

3.6.2 为什么要归一化?

  1. 为了后面数据处理的方便,归一化的确可以避免一些不必要的数值问题。
  2. 为了程序运行时收敛加快。
  3. 同一量纲。样本数据的评价标准不一样,需要对其量纲化,统一评价标准。这算是应用层面的需求。
  4. 避免神经元饱和。啥意思?就是当神经元的激活在接近 0 或者 1 时会饱和,在这些区域,梯度几乎为 0,这样,在反向传播过程中,局部梯度就会接近 0,这会有效地“杀死”梯度。
  5. 保证输出数据中数值小的不被吞食。

3.6.3 为什么归一化能提高求解最优解速度?

​ 上图是代表数据是否均一化的最优解寻解过程(圆圈可以理解为等高线)。左图表示未经归一化操作的寻解过程,右图表示经过归一化后的寻解过程。

​ 当使用梯度下降法寻求最优解时,很有可能走“之字型”路线(垂直等高线走),从而导致需要迭代很多次才能收敛;而右图对两个原始特征进行了归一化,其对应的等高线显得很圆,在梯度下降进行求解时能较快的收敛。

​ 因此如果机器学习模型使用梯度下降法求最优解时,归一化往往非常有必要,否则很难收敛甚至不能收敛。

3.6.4 3D 图解未归一化

例子:

​ 假设 w 1 w1 w1 的范围在 [ − 10 , 10 ] [-10, 10] [10,10],而 w 2 w2 w2 的范围在 [ − 100 , 100 ] [-100, 100] [100,100],梯度每次都前进 1 单位,那么在 w 1 w1 w1 方向上每次相当于前进了 1 / 20 1/20 1/20,而在 w 2 w2 w2 上只相当于 1 / 200 1/200 1/200!某种意义上来说,在 w 2 w2 w2 上前进的步长更小一些,而 w 1 w1 w1 在搜索过程中会比 w 2 w2 w2 “走”得更快。

​ 这样会导致,在搜索过程中更偏向于 w 1 w1 w1 的方向。走出了“L”形状,或者成为“之”字形。

3.6.5 归一化有哪些类型?

  1. 线性归一化

x ′ = x − m i n ( x ) m a x ( x ) − m i n ( x ) x^{\prime} = \frac{x-min(x)}{max(x) - min(x)} x=max(x)min(x)xmin(x)

​ 适用范围:比较适用在数值比较集中的情况。

​ 缺点:如果 max 和 min 不稳定,很容易使得归一化结果不稳定,使得后续使用效果也不稳定。

  1. 标准差标准化

x ′ = x − μ σ x^{\prime} = \frac{x-\mu}{\sigma} x=σxμ

​ 含义:经过处理的数据符合标准正态分布,即均值为 0,标准差为 1 其中 μ \mu μ 为所有样本数据的均值, σ \sigma σ 为所有样本数据的标准差。

  1. 非线性归一化

    适用范围:经常用在数据分化比较大的场景,有些数值很大,有些很小。通过一些数学函数,将原始值进行映射。该方法包括 l o g log log、指数,正切等。

3.6.6 局部响应归一化作用

​ LRN 是一种提高深度学习准确度的技术方法。LRN 一般是在激活、池化函数后的一种方法。

​ 在 ALexNet 中,提出了 LRN 层,对局部神经元的活动创建竞争机制,使其中响应比较大对值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。

3.6.7 理解局部响应归一化

​ 局部响应归一化原理是仿造生物学上活跃的神经元对相邻神经元的抑制现象(侧抑制),其公式如下:

b x , y i = a x , y i / ( k + α ∑ j = m a x ( 0 , i − n / 2 ) m i n ( N − 1 , i + n / 2 ) ( a x , y j ) 2 ) β b_{x,y}^i = a_{x,y}^i / (k + \alpha \sum_{j=max(0, i-n/2)}^{min(N-1, i+n/2)}(a_{x,y}^j)^2 )^\beta bx,yi=ax,yi/(k+αj=max(0,in/2)min(N1,i+n/2)(ax,yj)2)β

其中,

  1. a a a:表示卷积层(包括卷积操作和池化操作)后的输出结果,是一个四维数组[batch,height,width,channel]。
  • batch:批次数(每一批为一张图片)。
  • height:图片高度。
  • width:图片宽度。
  • channel:通道数。可以理解成一批图片中的某一个图片经过卷积操作后输出的神经元个数,或理解为处理后的图片深度。
  1. a x , y i a_{x,y}^i ax,yi 表示在这个输出结构中的一个位置 [ a , b , c , d ] [a,b,c,d] [a,b,c,d],可以理解成在某一张图中的某一个通道下的某个高度和某个宽度位置的点,即第 a a a 张图的第 d d d 个通道下的高度为b宽度为c的点。

  2. N N N:论文公式中的 N N N 表示通道数 (channel)。

  3. a a a n / 2 n/2 n/2 k k k 分别表示函数中的 input,depth_radius,bias。参数 k , n , α , β k, n, \alpha, \beta k,n,α,β 都是超参数,一般设置 k = 2 , n = 5 , α = 1 ∗ e − 4 , β = 0.75 k=2, n=5, \alpha=1*e-4, \beta=0.75 k=2,n=5,α=1e4,β=0.75

  4. ∑ \sum : ∑ \sum 叠加的方向是沿着通道方向的,即每个点值的平方和是沿着 a a a 中的第 3 维 channel 方向的,也就是一个点同方向的前面 n / 2 n/2 n/2 个通道(最小为第 0 0 0 个通道)和后 n / 2 n/2 n/2 个通道(最大为第 d − 1 d-1 d1 个通道)的点的平方和(共 n + 1 n+1 n+1 个点)。而函数的英文注解中也说明了把 input 当成是 d d d 个 3 维的矩阵,说白了就是把 input 的通道数当作 3 维矩阵的个数,叠加的方向也是在通道方向。

简单的示意图如下:

3.6.8 什么是批归一化(Batch Normalization)

​ 以前在神经网络训练中,只是对输入层数据进行归一化处理,却没有在中间层进行归一化处理。要知道,虽然我们对输入数据进行了归一化处理,但是输入数据经过 σ ( W X + b ) \sigma(WX+b) σ(WX+b) 这样的矩阵乘法以及非线性运算之后,其数据分布很可能被改变,而随着深度网络的多层运算之后,数据分布的变化将越来越大。如果我们能在网络的中间也进行归一化处理,是否对网络的训练起到改进作用呢?答案是肯定的。

​ 这种在神经网络中间层也进行归一化处理,使训练效果更好的方法,就是批归一化Batch Normalization(BN)。

3.6.9 批归一化(BN)算法的优点

下面我们来说一下BN算法的优点:

  1. 减少了人为选择参数。在某些情况下可以取消 dropout 和 L2 正则项参数,或者采取更小的 L2 正则项约束参数;
  2. 减少了对学习率的要求。现在我们可以使用初始很大的学习率或者选择了较小的学习率,算法也能够快速训练收敛;
  3. 可以不再使用局部响应归一化。BN 本身就是归一化网络(局部响应归一化在 AlexNet 网络中存在)
  4. 破坏原来的数据分布,一定程度上缓解过拟合(防止每批训练中某一个样本经常被挑选到,文献说这个可以提高 1% 的精度)。
  5. 减少梯度消失,加快收敛速度,提高训练精度。

3.6.10 批归一化(BN)算法流程

下面给出 BN 算法在训练时的过程

输入:上一层输出结果 X = x 1 , x 2 , . . . , x m X = {x_1, x_2, ..., x_m} X=x1,x2,...,xm,学习参数 γ , β \gamma, \beta γ,β

算法流程:

  1. 计算上一层输出数据的均值

μ β = 1 m ∑ i = 1 m ( x i ) \mu_{\beta} = \frac{1}{m} \sum_{i=1}^m(x_i) μβ=m1i=1m(xi)

其中, m m m 是此次训练样本 batch 的大小。

  1. 计算上一层输出数据的标准差

σ β 2 = 1 m ∑ i = 1 m ( x i − μ β ) 2 \sigma_{\beta}^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\beta})^2 σβ2=m1i=1m(xiμβ)2

  1. 归一化处理,得到

x ^ i = x i + μ β σ β 2 + ϵ \hat x_i = \frac{x_i + \mu_{\beta}}{\sqrt{\sigma_{\beta}^2} + \epsilon} x^i=σβ2 +ϵxi+μβ

其中 ϵ \epsilon ϵ 是为了避免分母为 0 而加进去的接近于 0 的很小值

  1. 重构,对经过上面归一化处理得到的数据进行重构,得到

y i = γ x ^ i + β y_i = \gamma \hat x_i + \beta yi=γx^i+β

其中, γ , β \gamma, \beta γ,β 为可学习参数。

注:上述是 BN 训练时的过程,但是当在投入使用时,往往只是输入一个样本,没有所谓的均值 μ β \mu_{\beta} μβ 和标准差 σ β 2 \sigma_{\beta}^2 σβ2。此时,均值 μ β \mu_{\beta} μβ 是计算所有 batch m u β mu_{\beta} muβ 值的平均值得到,标准差 σ β 2 \sigma_{\beta}^2 σβ2 采用每个batch σ β 2 \sigma_{\beta}^2 σβ2 的无偏估计得到。

3.6.11 批归一化和群组归一化比较

名称特点
批量归一化(Batch Normalization,以下简称 BN)可让各种网络并行训练。但是,批量维度进行归一化会带来一些问题——批量统计估算不准确导致批量变小时,BN 的误差会迅速增加。在训练大型网络和将特征转移到计算机视觉任务中(包括检测、分割和视频),内存消耗限制了只能使用小批量的 BN。
群组归一化 Group Normalization (简称 GN)GN 将通道分成组,并在每组内计算归一化的均值和方差。GN 的计算与批量大小无关,并且其准确度在各种批量大小下都很稳定。
比较在 ImageNet 上训练的 ResNet-50上,GN 使用批量大小为 2 时的错误率比 BN 的错误率低 10.6% ;当使用典型的批量时,GN 与 BN 相当,并且优于其他标归一化变体。而且,GN 可以自然地从预训练迁移到微调。在进行 COCO 中的目标检测和分割以及 Kinetics 中的视频分类比赛中,GN 可以胜过其竞争对手,表明 GN 可以在各种任务中有效地取代强大的 BN。

3.6.12 Weight Normalization和Batch Normalization比较

​ Weight Normalization 和 Batch Normalization 都属于参数重写(Reparameterization)的方法,只是采用的方式不同。

​ Weight Normalization 是对网络权值 W W W 进行 normalization,因此也称为 Weight Normalization;

​ Batch Normalization 是对网络某一层输入数据进行 normalization。

​ Weight Normalization相比Batch Normalization有以下三点优势:

  1. Weight Normalization 通过重写深度学习网络的权重W的方式来加速深度学习网络参数收敛,没有引入 minbatch 的依赖,适用于 RNN(LSTM)网络(Batch Normalization 不能直接用于RNN,进行 normalization 操作,原因在于:1) RNN 处理的 Sequence 是变长的;2) RNN 是基于 time step 计算,如果直接使用 Batch Normalization 处理,需要保存每个 time step 下,mini btach 的均值和方差,效率低且占内存)。

  2. Batch Normalization 基于一个 mini batch 的数据计算均值和方差,而不是基于整个 Training set 来做,相当于进行梯度计算式引入噪声。因此,Batch Normalization 不适用于对噪声敏感的强化学习、生成模型(Generative model:GAN,VAE)使用。相反,Weight Normalization 对通过标量 g g g 和向量 v v v 对权重 W W W 进行重写,重写向量 v v v 是固定的,因此,基于 Weight Normalization 的 Normalization 可以看做比 Batch Normalization 引入更少的噪声。

  3. 不需要额外的存储空间来保存 mini batch 的均值和方差,同时实现 Weight Normalization 时,对深度学习网络进行正向信号传播和反向梯度计算带来的额外计算开销也很小。因此,要比采用 Batch Normalization 进行 normalization 操作时,速度快。 但是 Weight Normalization 不具备 Batch Normalization 把网络每一层的输出 Y 固定在一个变化范围的作用。因此,采用 Weight Normalization 进行 Normalization 时需要特别注意参数初始值的选择。

3.6.13 Batch Normalization在什么时候用比较合适?

(贡献者:黄钦建-华南理工大学)

​ 在CNN中,BN应作用在非线性映射前。在神经网络训练时遇到收敛速度很慢,或梯度爆炸等无法训练的状况时可以尝试BN来解决。另外,在一般使用情况下也可以加入BN来加快训练速度,提高模型精度。

​ BN比较适用的场景是:每个mini-batch比较大,数据分布比较接近。在进行训练之前,要做好充分的shuffle,否则效果会差很多。另外,由于BN需要在运行过程中统计每个mini-batch的一阶统计量和二阶统计量,因此不适用于动态的网络结构和RNN网络。

3.7 预训练与微调(fine tuning)

3.7.1 为什么无监督预训练可以帮助深度学习?

深度网络存在问题:

  1. 网络越深,需要的训练样本数越多。若用监督则需大量标注样本,不然小规模样本容易造成过拟合。深层网络特征比较多,会出现的多特征问题主要有多样本问题、规则化问题、特征选择问题。

  2. 多层神经网络参数优化是个高阶非凸优化问题,经常得到收敛较差的局部解;

  3. 梯度扩散问题,BP算法计算出的梯度随着深度向前而显著下降,导致前面网络参数贡献很小,更新速度慢。

解决方法:

​ 逐层贪婪训练,无监督预训练(unsupervised pre-training)即训练网络的第一个隐藏层,再训练第二个…最后用这些训练好的网络参数值作为整体网络参数的初始值。

经过预训练最终能得到比较好的局部最优解。

3.7.2 什么是模型微调fine tuning

​ 用别人的参数、修改后的网络和自己的数据进行训练,使得参数适应自己的数据,这样一个过程,通常称之为微调(fine tuning).

模型的微调举例说明:

​ 我们知道,CNN 在图像识别这一领域取得了巨大的进步。如果想将 CNN 应用到我们自己的数据集上,这时通常就会面临一个问题:通常我们的 dataset 都不会特别大,一般不会超过 1 万张,甚至更少,每一类图片只有几十或者十几张。这时候,直接应用这些数据训练一个网络的想法就不可行了,因为深度学习成功的一个关键性因素就是大量带标签数据组成的训练集。如果只利用手头上这点数据,即使我们利用非常好的网络结构,也达不到很高的 performance。这时候,fine-tuning 的思想就可以很好解决我们的问题:我们通过对 ImageNet 上训练出来的模型(如CaffeNet,VGGNet,ResNet) 进行微调,然后应用到我们自己的数据集上。

3.7.3 微调时候网络参数是否更新?

答案:会更新。

  1. finetune 的过程相当于继续训练,跟直接训练的区别是初始化的时候。
  2. 直接训练是按照网络定义指定的方式初始化。
  3. finetune是用你已经有的参数文件来初始化。

3.7.4 fine-tuning 模型的三种状态

  1. 状态一:只预测,不训练。
    特点:相对快、简单,针对那些已经训练好,现在要实际对未知数据进行标注的项目,非常高效;

  2. 状态二:训练,但只训练最后分类层。
    特点:fine-tuning的模型最终的分类以及符合要求,现在只是在他们的基础上进行类别降维。

  3. 状态三:完全训练,分类层+之前卷积层都训练
    特点:跟状态二的差异很小,当然状态三比较耗时和需要训练GPU资源,不过非常适合fine-tuning到自己想要的模型里面,预测精度相比状态二也提高不少。

3.8 权重偏差初始化

3.8.1 全都初始化为 0

偏差初始化陷阱: 都初始化为 0。

产生陷阱原因:因为并不知道在训练神经网络中每一个权重最后的值,但是如果进行了恰当的数据归一化后,我们可以有理由认为有一半的权重是正的,另一半是负的。令所有权重都初始化为 0,如果神经网络计算出来的输出值是一样的,神经网络在进行反向传播算法计算出来的梯度值也一样,并且参数更新值也一样。更一般地说,如果权重初始化为同一个值,网络就是对称的。

形象化理解:在神经网络中考虑梯度下降的时候,设想你在爬山,但身处直线形的山谷中,两边是对称的山峰。由于对称性,你所在之处的梯度只能沿着山谷的方向,不会指向山峰;你走了一步之后,情况依然不变。结果就是你只能收敛到山谷中的一个极大值,而走不到山峰上去。

3.8.2 全都初始化为同样的值

​ 偏差初始化陷阱: 都初始化为一样的值。
​ 以一个三层网络为例:
首先看下结构

它的表达式为:

a 1 ( 2 ) = f ( W 11 ( 1 ) x 1 + W 12 ( 1 ) x 2 + W 13 ( 1 ) x 3 + b 1 ( 1 ) ) a_1^{(2)} = f(W_{11}^{(1)} x_1 + W_{12}^{(1)} x_2 + W_{13}^{(1)} x_3 + b_1^{(1)}) a1(2)=f(W11(1)x1+W12(1)x2+W13(1)x3+b1(1))

a 2 ( 2 ) = f ( W 21 ( 1 ) x 1 + W 22 ( 1 ) x 2 + W 23 ( 1 ) x 3 + b 2 ( 1 ) ) a_2^{(2)} = f(W_{21}^{(1)} x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + b_2^{(1)}) a2(2)=f(W21(1)x1+W22(1)x2+W23(1)x3+b2(1))

a 3 ( 2 ) = f ( W 31 ( 1 ) x 1 + W 32 ( 1 ) x 2 + W 33 ( 1 ) x 3 + b 3 ( 1 ) ) a_3^{(2)} = f(W_{31}^{(1)} x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 + b_3^{(1)}) a3(2)=f(W31(1)x1+W32(1)x2+W33(1)x3+b3(1))

h W , b ( x ) = a 1 ( 3 ) = f ( W 11 ( 2 ) a 1 ( 2 ) + W 12 ( 2 ) a 2 ( 2 ) + W 13 ( 2 ) a 3 ( 2 ) + b 1 ( 2 ) ) h_{W,b}(x) = a_1^{(3)} = f(W_{11}^{(2)} a_1^{(2)} + W_{12}^{(2)} a_2^{(2)} + W_{13}^{(2)} a_3^{(2)} + b_1^{(2)}) hW,b(x)=a1(3)=f(W11(2)a1(2)+W12(2)a2(2)+W13(2)a3(2)+b1(2))

x a 1 ( 2 ) = f ( W 11 ( 1 ) x 1 + W 12 ( 1 ) x 2 + W 13 ( 1 ) x 3 + b 1 ( 1 ) ) a 2 ( 2 ) = f ( W 21 ( 1 ) x 1 + W 22 ( 1 ) x 2 + W 23 ( 1 ) x 3 + xa_1^{(2)} = f(W_{11}^{(1)} x_1 + W_{12}^{(1)} x_2 + W_{13}^{(1)} x_3 + b_1^{(1)})a_2^{(2)} = f(W_{21}^{(1)} x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + xa1(2)=f(W11(1)x1+W12(1)x2+W13(1)x3+b1(1))a2(2)=f(W21(1)x1+W22(1)x2+W23(1)x3+

如果每个权重都一样,那么在多层网络中,从第二层开始,每一层的输入值都是相同的了也就是 a 1 = a 2 = a 3 = . . . . a1=a2=a3=.... a1=a2=a3=....,既然都一样,就相当于一个输入了,为啥呢??

如果是反向传递算法(如果这里不明白请看上面的连接),其中的偏置项和权重项的迭代的偏导数计算公式如下

∂ ∂ W i j ( l ) J ( W , b ; x , y ) = a j ( l ) δ i ( l + 1 ) ∂ ∂ b i ( l ) J ( W , b ; x , y ) = δ i ( l + 1 ) \frac{\partial}{\partial W_{ij}^{(l)}} J(W,b;x,y) = a_j^{(l)} \delta_i^{(l+1)} \frac{\partial}{\partial b_{i}^{(l)}} J(W,b;x,y) = \delta_i^{(l+1)} Wij(l)J(W,b;x,y)=aj(l)δi(l+1)bi(l)J(W,b;x,y)=δi(l+1)

δ \delta δ 的计算公式

δ i ( l ) = ( ∑ j = 1 s t + 1 W j i ( l ) δ j ( l + 1 ) ) f ′ ( z i ( l ) ) \delta_i^{(l)} = (\sum_{j=1}^{s_{t+1}} W_{ji}^{(l)} \delta_j^{(l+1)} ) f^{\prime}(z_i^{(l)}) δi(l)=(j=1st+1Wji(l)δj(l+1))f(zi(l))

如果用的是 sigmoid 函数

f ′ ( z i ( l ) ) = a i ( l ) ( 1 − a i ( l ) ) f^{\prime}(z_i^{(l)}) = a_i^{(l)}(1-a_i^{(l)}) f(zi(l))=ai(l)(1ai(l))

把后两个公式代入,可以看出所得到的梯度下降法的偏导相同,不停的迭代,不停的相同,不停的迭代,不停的相同…,最后就得到了相同的值(权重和截距)。

3.8.3 初始化为小的随机数

​ 将权重初始化为很小的数字是一个普遍的打破网络对称性的解决办法。这个想法是,神经元在一开始都是随机的、独一无二的,所以它们会计算出不同的更新,并将自己整合到整个网络的各个部分。一个权重矩阵的实现可能看起来像 W = 0.01 ∗ n p . r a n d o m . r a n d n ( D , H ) W=0.01∗np.random.randn(D,H) W=0.01np.random.randn(D,H),其中 randn 是从均值为 0 的单位标准高斯分布进行取样。通过这个公式(函数),每个神经元的权重向量初始化为一个从多维高斯分布取样的随机向量,所以神经元在输入空间中指向随机的方向(so the neurons point in random direction in the input space). 应该是指输入空间对于随机方向有影响)。其实也可以从均匀分布中来随机选取小数,但是在实际操作中看起来似乎对最后的表现并没有太大的影响。

​ 备注:并不是数字越小就会表现的越好。比如,如果一个神经网络层的权重非常小,那么在反向传播算法就会计算出很小的梯度(因为梯度 gradient 是与权重成正比的)。在网络不断的反向传播过程中将极大地减少“梯度信号”,并可能成为深层网络的一个需要注意的问题。

3.8.4 用 1 / n 1/\sqrt n 1/n 校准方差

​ 上述建议的一个问题是,随机初始化神经元的输出的分布有一个随输入量增加而变化的方差。结果证明,我们可以通过将其权重向量按其输入的平方根(即输入的数量)进行缩放,从而将每个神经元的输出的方差标准化到 1。也就是说推荐的启发式方法 (heuristic) 是将每个神经元的权重向量按下面的方法进行初始化: w = n p . r a n d o m . r a n d n ( n ) / n w=np.random.randn(n)/\sqrt n w=np.random.randn(n)/n ,其中 n 表示输入的数量。这保证了网络中所有的神经元最初的输出分布大致相同,并在经验上提高了收敛速度。

3.8.5 稀疏初始化(Sparse Initialazation)

​ 另一种解决未校准方差问题的方法是把所有的权重矩阵都设为零,但是为了打破对称性,每个神经元都是随机连接地(从如上面所介绍的一个小的高斯分布中抽取权重)到它下面的一个固定数量的神经元。一个典型的神经元连接的数目可能是小到 10 个。

3.8.6 初始化偏差

​ 将偏差初始化为零是可能的,也是很常见的,因为非对称性破坏是由权重的小随机数导致的。因为 ReLU 具有非线性特点,所以有些人喜欢使用将所有的偏差设定为小的常数值如 0.01,因为这样可以确保所有的 ReLU 单元在最开始就激活触发(fire)并因此能够获得和传播一些梯度值。然而,这是否能够提供持续的改善还不太清楚(实际上一些结果表明这样做反而使得性能更加糟糕),所以更通常的做法是简单地将偏差初始化为 0.

3.9 学习率

3.9.1 学习率的作用

​ 在机器学习中,监督式学习通过定义一个模型,并根据训练集上的数据估计最优参数。梯度下降法是一个广泛被用来最小化模型误差的参数优化算法。梯度下降法通过多次迭代,并在每一步中最小化成本函数(cost 来估计模型的参数。学习率 (learning rate),在迭代过程中会控制模型的学习进度。

​ 在梯度下降法中,都是给定的统一的学习率,整个优化过程中都以确定的步长进行更新, 在迭代优化的前期中,学习率较大,则前进的步长就会较长,这时便能以较快的速度进行梯度下降,而在迭代优化的后期,逐步减小学习率的值,减小步长,这样将有助于算法的收敛,更容易接近最优解。故而如何对学习率的更新成为了研究者的关注点。
​ 在模型优化中,常用到的几种学习率衰减方法有:分段常数衰减、多项式衰减、指数衰减、自然指数衰减、余弦衰减、线性余弦衰减、噪声线性余弦衰减

3.9.2 学习率衰减常用参数有哪些

参数名称参数说明
learning_rate初始学习率
global_step用于衰减计算的全局步数,非负,用于逐步计算衰减指数
decay_steps衰减步数,必须是正值,决定衰减周期
decay_rate衰减率
end_learning_rate最低的最终学习率
cycle学习率下降后是否重新上升
alpha最小学习率
num_periods衰减余弦部分的周期数
initial_variance噪声的初始方差
variance_decay衰减噪声的方差

3.9.3 分段常数衰减

​ 分段常数衰减需要事先定义好的训练次数区间,在对应区间置不同的学习率的常数值,一般情况刚开始的学习率要大一些,之后要越来越小,要根据样本量的大小设置区间的间隔大小,样本量越大,区间间隔要小一点。下图即为分段常数衰减的学习率变化图,横坐标代表训练次数,纵坐标代表学习率。

3.9.4 指数衰减

​ 以指数衰减方式进行学习率的更新,学习率的大小和训练次数指数相关,其更新规则为:
d e c a y e d _ l e a r n i n g _ r a t e = l e a r n i n g _ r a t e ∗ d e c a y _ r a t e g l o b a l _ s t e p d e c a y _ s t e p s decayed{\_}learning{\_}rate =learning{\_}rate*decay{\_}rate^{\frac{global{\_step}}{decay{\_}steps}} decayed_learning_rate=learning_ratedecay_ratedecay_stepsglobal_step
​ 这种衰减方式简单直接,收敛速度快,是最常用的学习率衰减方式,如下图所示,绿色的为学习率随
训练次数的指数衰减方式,红色的即为分段常数衰减,它在一定的训练区间内保持学习率不变。

3.9.5 自然指数衰减

​ 它与指数衰减方式相似,不同的在于它的衰减底数是 e e e,故而其收敛的速度更快,一般用于相对比较
容易训练的网络,便于较快的收敛,其更新规则如下
d e c a y e d _ l e a r n i n g _ r a t e = l e a r n i n g _ r a t e ∗ e − d e c a y _ r a t e g l o b a l _ s t e p decayed{\_}learning{\_}rate =learning{\_}rate*e^{\frac{-decay{\_rate}}{global{\_}step}} decayed_learning_rate=learning_rateeglobal_stepdecay_rate
​ 下图为为分段常数衰减、指数衰减、自然指数衰减三种方式的对比图,红色的即为分段常数衰减图,阶梯型曲线。蓝色线为指数衰减图,绿色即为自然指数衰减图,很明可以看到自然指数衰减方式下的学习率衰减程度要大于一般指数衰减方式,有助于更快的收敛。

3.9.6 多项式衰减

​ 应用多项式衰减的方式进行更新学习率,这里会给定初始学习率和最低学习率取值,然后将会按照
给定的衰减方式将学习率从初始值衰减到最低值,其更新规则如下式所示。
g l o b a l _ s t e p = m i n ( g l o b a l _ s t e p , d e c a y _ s t e p s ) global{\_}step=min(global{\_}step,decay{\_}steps) global_step=min(global_step,decay_steps)

d e c a y e d _ l e a r n i n g _ r a t e = ( l e a r n i n g _ r a t e − e n d _ l e a r n i n g _ r a t e ) ∗ ( 1 − g l o b a l _ s t e p d e c a y _ s t e p s ) p o w e r + e n d _ l e a r n i n g _ r a t e decayed{\_}learning{\_}rate =(learning{\_}rate-end{\_}learning{\_}rate)* \left( 1-\frac{global{\_step}}{decay{\_}steps}\right)^{power} \\ +end{\_}learning{\_}rate decayed_learning_rate=(learning_rateend_learning_rate)(1decay_stepsglobal_step)power+end_learning_rate

​ 需要注意的是,有两个机制,降到最低学习率后,到训练结束可以一直使用最低学习率进行更新,另一个是再次将学习率调高,使用 decay_steps 的倍数,取第一个大于 global_steps 的结果,如下式所示.它是用来防止神经网络在训练的后期由于学习率过小而导致的网络一直在某个局部最小值附近震荡,这样可以通过在后期增大学习率跳出局部极小值。
d e c a y _ s t e p s = d e c a y _ s t e p s ∗ c e i l ( g l o b a l _ s t e p d e c a y _ s t e p s ) decay{\_}steps = decay{\_}steps*ceil \left( \frac{global{\_}step}{decay{\_}steps}\right) decay_steps=decay_stepsceil(decay_stepsglobal_step)
​ 如下图所示,红色线代表学习率降低至最低后,一直保持学习率不变进行更新,绿色线代表学习率衰减到最低后,又会再次循环往复的升高降低。

3.9.7 余弦衰减

​ 余弦衰减就是采用余弦的相关方式进行学习率的衰减,衰减图和余弦函数相似。其更新机制如下式所示:
g l o b a l _ s t e p = m i n ( g l o b a l _ s t e p , d e c a y _ s t e p s ) global{\_}step=min(global{\_}step,decay{\_}steps) global_step=min(global_step,decay_steps)

c o s i n e _ d e c a y = 0.5 ∗ ( 1 + c o s ( π ∗ g l o b a l _ s t e p d e c a y _ s t e p s ) ) cosine{\_}decay=0.5*\left( 1+cos\left( \pi* \frac{global{\_}step}{decay{\_}steps}\right)\right) cosine_decay=0.5(1+cos(πdecay_stepsglobal_step))

d e c a y e d = ( 1 − α ) ∗ c o s i n e _ d e c a y + α decayed=(1-\alpha)*cosine{\_}decay+\alpha decayed=(1α)cosine_decay+α

d e c a y e d _ l e a r n i n g _ r a t e = l e a r n i n g _ r a t e ∗ d e c a y e d decayed{\_}learning{\_}rate=learning{\_}rate*decayed decayed_learning_rate=learning_ratedecayed

​ 如下图所示,红色即为标准的余弦衰减曲线,学习率从初始值下降到最低学习率后保持不变。蓝色的线是线性余弦衰减方式曲线,它是学习率从初始学习率以线性的方式下降到最低学习率值。绿色噪声线性余弦衰减方式。

3.12 Dropout 系列问题

3.12.1 为什么要正则化?

  1. 深度学习可能存在过拟合问题——高方差,有两个解决方法,一个是正则化,另一个是准备更多的数据,这是非常可靠的方法,但你可能无法时时刻刻准备足够多的训练数据或者获取更多数据的成本很高,但正则化通常有助于避免过拟合或减少你的网络误差。
  2. 如果你怀疑神经网络过度拟合了数据,即存在高方差问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,这也是非常可靠的办法,但你可能无法时时准备足够多的训练数据,或者,获取更多数据的成本很高,但正则化有助于避免过度拟合,或者减少网络误差。

3.12.2 为什么正则化有利于预防过拟合?

左图是高偏差,右图是高方差,中间是Just Right,这几张图我们在前面课程中看到过。

3.12.3 理解dropout正则化

​ Dropout可以随机删除网络中的神经单元,它为什么可以通过正则化发挥如此大的作用呢?

​ 直观上理解:不要依赖于任何一个特征,因为该单元的输入可能随时被清除,因此该单元通过这种方式传播下去,并为单元的四个输入增加一点权重,通过传播所有权重,dropout将产生收缩权重的平方范数的效果,和之前讲的L2正则化类似;实施dropout的结果实它会压缩权重,并完成一些预防过拟合的外层正则化;L2对不同权重的衰减是不同的,它取决于激活函数倍增的大小。

3.12.4 dropout率的选择

  1. 经过交叉验证,隐含节点 dropout 率等于 0.5 的时候效果最好,原因是 0.5 的时候 dropout 随机生成的网络结构最多。
  2. dropout 也可以被用作一种添加噪声的方法,直接对 input 进行操作。输入层设为更接近 1 的数。使得输入变化不会太大(0.8)
  3. 对参数 w w w 的训练进行球形限制 (max-normalization),对 dropout 的训练非常有用。
  4. 球形半径 c c c 是一个需要调整的参数,可以使用验证集进行参数调优。
  5. dropout 自己虽然也很牛,但是 dropout、max-normalization、large decaying learning rates and high momentum 组合起来效果更好,比如 max-norm regularization 就可以防止大的learning rate 导致的参数 blow up。
  6. 使用 pretraining 方法也可以帮助 dropout 训练参数,在使用 dropout 时,要将所有参数都乘以 1 / p 1/p 1/p

3.12.5 dropout有什么缺点?

​ dropout一大缺点就是代价函数J不再被明确定义,每次迭代,都会随机移除一些节点,如果再三检查梯度下降的性能,实际上是很难进行复查的。定义明确的代价函数J每次迭代后都会下降,因为我们所优化的代价函数J实际上并没有明确定义,或者说在某种程度上很难计算,所以我们失去了调试工具来绘制这样的图片。我通常会关闭dropout函数,将keep-prob的值设为1,运行代码,确保J函数单调递减。然后打开dropout函数,希望在dropout过程中,代码并未引入bug。我觉得你也可以尝试其它方法,虽然我们并没有关于这些方法性能的数据统计,但你可以把它们与dropout方法一起使用。

3.13 深度学习中常用的数据增强方法?

(贡献者:黄钦建-华南理工大学)

  • Color Jittering:对颜色的数据增强:图像亮度、饱和度、对比度变化(此处对色彩抖动的理解不知是否得当);

  • PCA Jittering:首先按照RGB三个颜色通道计算均值和标准差,再在整个训练集上计算协方差矩阵,进行特征分解,得到特征向量和特征值,用来做PCA Jittering;

  • Random Scale:尺度变换;

  • Random Crop:采用随机图像差值方式,对图像进行裁剪、缩放;包括Scale Jittering方法(VGG及ResNet模型使用)或者尺度和长宽比增强变换;

  • Horizontal/Vertical Flip:水平/垂直翻转;

  • Shift:平移变换;

  • Rotation/Reflection:旋转/仿射变换;

  • Noise:高斯噪声、模糊处理;

  • Label Shuffle:类别不平衡数据的增广;

3.14 如何理解 Internal Covariate Shift?

(贡献者:黄钦建-华南理工大学)

​ 深度神经网络模型的训练为什么会很困难?其中一个重要的原因是,深度神经网络涉及到很多层的叠加,而每一层的参数更新会导致上层的输入数据分布发生变化,通过层层叠加,高层的输入分布变化会非常剧烈,这就使得高层需要不断去重新适应底层的参数更新。为了训好模型,我们需要非常谨慎地去设定学习率、初始化权重、以及尽可能细致的参数更新策略。

​ Google 将这一现象总结为 Internal Covariate Shift,简称 ICS。 什么是 ICS 呢?

​ 大家都知道在统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的”。如果不一致,那么就出现了新的机器学习问题,如 transfer learning / domain adaptation 等。而 covariate shift 就是分布不一致假设之下的一个分支问题,它是指源空间和目标空间的条件概率是一致的,但是其边缘概率不同。

​ 大家细想便会发现,的确,对于神经网络的各层输出,由于它们经过了层内操作作用,其分布显然与各层对应的输入信号分布不同,而且差异会随着网络深度增大而增大,可是它们所能“指示”的样本标记(label)仍然是不变的,这便符合了covariate shift的定义。由于是对层间信号的分析,也即是“internal”的来由。

那么ICS会导致什么问题?

简而言之,每个神经元的输入数据不再是“独立同分布”。

其一,上层参数需要不断适应新的输入数据分布,降低学习速度。

其二,下层输入的变化可能趋向于变大或者变小,导致上层落入饱和区,使得学习过早停止。

其三,每层的更新都会影响到其它层,因此每层的参数更新策略需要尽可能的谨慎。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值