风险中性定价及Black-Scholes看涨期权的公式推导

Risk Neutral Pricing

Radon-Nikodým Theorem
For equivalent measures P \mathbb{P} P and P ~ \tilde{\mathbb{P}} P~, we have P ~ ( A ) = ∫ A Z ( ω )   d P ( ω ) \tilde{\mathbb{P}}(A)=\int_\mathcal{A} Z(\omega) \, d\mathbb{P}(\omega) P~(A)=AZ(ω)dP(ω), where Z ( ω ) ≔ d P ~ d P Z(\omega)\coloneqq \frac{d\tilde{\mathbb{P}}}{d\mathbb{P}} Z(ω):=dPdP~ is the Radon-Nikodým derivative and:
E [ X ] ~ = E [ X Z ]    ⟺    Z − 1  defined E [ X ] = E ~ [ X Z − 1 ] \tilde{\mathbb{E}[X]} = \mathbb{E}\left[ XZ \right]\qquad \overset{Z^{-1}\text{ defined}}{\iff} \qquad\mathbb{E}[X] = \tilde{\mathbb{E}}[XZ^{-1}] E[X]~=E[XZ]Z1 definedE[X]=E~[XZ1]

Girsanov Theorem
Let W t W_t Wt be a B.M. under P \mathbb{P} P, and Θ ( t ) \Theta(t) Θ(t) an adapted process of filtration F ( t ) \mathcal{F}(t) F(t), and assume E ∫ 0 T Θ 2 ( t ) Z 2 ( u )   d u < ∞ \mathbb{E}\int_0^T \Theta^2(t)Z^2(u) \, du < \infty E0TΘ2(t)Z2(u)du<, then:
Z ( t ) = exp ⁡ ( − ∫ 0 t Θ ( u )   d W u − 1 2 ∫ 0 t Θ 2 ( u )   d u ) W ~ t = W t + ∫ 0 t Θ ( u )   d u    ⟺    d W ~ t = d W t + Θ ( t ) d t \begin{aligned} Z(t) &= \exp\left( -\int_0^t \Theta(u) \, dW_u - \frac{1}{2}\int_0^t \Theta^2(u) \, du \right) \\ \\ \tilde{W}_t &= W_t + \int_0^t \Theta(u) \, du \qquad\iff\qquad d\tilde{W}_t = dW_t + \Theta(t)dt \end{aligned} Z(t)W~t=exp(0tΘ(u)dWu210tΘ2(u)du)=Wt+0tΘ(u)dudW~t=dWt+Θ(t)dt
Then W ~ t \tilde{W}_t W~t is a B.M. under P ~ \tilde{\mathbb{P}} P~.

(First) Fundamental Theorem of Asset Pricing
A market is arbitrage-free if and only if there exist an equivalent matringale measure Q \mathbb{Q} Q. Specifically, we want the discounted stock process D ( t ) S ( t ) = D t S t D(t)S(t)=D_tS_t D(t)S(t)=DtSt to be a martingale.

Stock Process d S t = μ t S t d t + σ t S t d W t    ⟹    S t = S 0 exp ⁡ ( ∫ 0 t ( μ s − 1 2 σ s 2 )   d s + ∫ 0 t σ s   d W s ) Discount Process d D t = − R t D t d t    ⟹    D t = e − ∫ 0 t R s   d s Discounted Stock Process D t S t = S 0 exp ⁡ ( ∫ 0 t ( μ s − R s − 1 2 σ s 2 )   d s + ∫ 0 t σ s   d W s )    ⟹    d ( D t S t ) = σ t D t S t ( μ t − R t σ t ≕ Θ ( t ) d t + d W t ) \begin{aligned} &\text{Stock Process}& dS_t &= \mu_tS_tdt + \sigma_tS_tdW_t \\ \\ && \implies S_t &= S_0\exp\left( \int_0^t \left( \mu_s-\frac{1}{2}\sigma^2_s \right) \, ds + \int_0^t \sigma_s \, dW_s \right) \\ \\ \\ &\text{Discount Process}& dD_t &= -R_tD_tdt \\ \\ && \implies D_t &= e^{-\int_0^t R_s \, ds} \\ \\ \\ &\text{Discounted Stock Process}& D_tS_t &= S_0\exp\left( \int_0^t \left( \mu_s- R_s- \frac{1}{2}\sigma^2_s \right) \, ds + \int_0^t \sigma_s \, dW_s \right) \\ \\ && \implies d\left( D_tS_t \right) &= \sigma_tD_tS_t\left( \underset{\eqqcolon \Theta(t)}{\frac{\mu_t-R_t}{\sigma_t}}dt +dW_t\right) \\ \\ \end{aligned} Stock ProcessDiscount ProcessDiscounted Stock ProcessdStStdDtDtDtStd(DtSt)=μtStdt+σtStdWt=S0exp(0t(μs21σs2)ds+0tσsdWs)=RtDtdt=e0tRsds=S0exp(0t(μsRs21σs2)ds+0tσsdWs)=σtDtSt =:Θ(t)σtμtRtdt+dWt
Where R t R_t Rt is the adapted I.R. process.

Recall from Fundamental Theorem of Asset Pricing, we want the discounted stock price to be a martingale. This can be achieved by making ( μ t − R t σ t d t + d W t ) \left( {\frac{\mu_t-R_t}{\sigma_t}dt} +dW_t\right) (σtμtRtdt+dWt) term a B.M. using Girsanov Theorem, such that:

d W ~ t = ! μ t − R t σ t d t + d W t    ⟹    d S t = μ t S t d t + σ t S t d W t = μ t S t d t + σ t S t ( d W ~ t − μ t − R t σ t d t ) = R t S t d t + σ t S t d W ~ t □ \begin{aligned} d\tilde{W}_t \overset{!}= \frac{\mu_t-R_t}{\sigma_t}dt +dW_t\qquad \implies \qquad dS_t &= \mu_tS_tdt + \sigma_t S_t dW_t \\ \\ &= \mu_tS_tdt + \sigma_tS_t\left( d\tilde{W}_t-\frac{\mu_t-R_t}{\sigma_t}dt \right) \\ \\ &= R_tS_tdt + \sigma_tS_td\tilde{W}_t&\square \end{aligned} dW~t=!σtμtRtdt+dWtdSt=μtStdt+σtStdWt=μtStdt+σtSt(dW~tσtμtRtdt)=RtStdt+σtStdW~t

Black-Scholes Formula for Call Option

Stock Price under  Q d S t = r S t d t + σ S t d W t Value of Call Option C t = E [ e − r τ ( S T − K ) + ∣ S t ] \begin{aligned} &\text{Stock Price under $\mathbb{Q}$}& dS_t &= rS_tdt + \sigma S_t dW_t \\ \\ &\text{Value of Call Option}& C_t &= \mathbb{E}\left[ e^{-r\tau} \left( S_T-K \right)^+ |S_t \right] \end{aligned} Stock Price under QValue of Call OptiondStCt=rStdt+σStdWt=E[erτ(STK)+St]

By Direct Integration

C t = E [ e − r τ ( S T − K ) + ∣ S t ] = e − r τ E [ ( S t e ( r − 1 2 σ 2 ) τ + σ τ ϵ − K ) + ∣ S t ] = e − r τ [ ∫ R ( S t e ( r − 1 2 σ 2 ) τ + σ τ ϵ − K ) + f ϵ ( ϵ )   d ϵ ] = e − r τ [ ∫ R ( S t e ( r − 1 2 σ 2 ) τ + σ τ ϵ − K ) + 1 2 π e − 1 2 ϵ 2   d ϵ ] = e − r τ [ ∫ − d 2 ∞ S t e ( r − 1 2 σ 2 ) τ + σ τ ϵ 1 2 π e − 1 2 ϵ 2   d ϵ    −    ∫ − d 2 ∞ K 1 2 π e − 1 2 ϵ 2   d ϵ ] = e − r τ [ ∫ − d 2 ∞ 1 2 π S t e ( r − 1 2 σ 2 ) τ + σ τ ϵ − 1 2 ϵ 2   d ϵ    −    K ( 1 − N ( − d 2 ) ) ] = e − r τ [ e r τ S t ∫ − d 2 ∞ 1 2 π e 1 2 σ 2 τ + σ τ ϵ − 1 2 ϵ 2   d ϵ    −    K N ( d 2 ) ] = e − r τ [ e r τ S t ∫ − d 2 ∞ 1 2 π e − 1 2 ( ϵ − σ τ ) 2   d ϵ    −    K N ( d 2 ) ] = e − r τ [ e r τ S t ∫ − d 2 − σ τ ∞ 1 2 π e − 1 2 u 2   d u    −    K N ( d 2 ) ] u ≔ ϵ − σ τ = e − r τ [ e r τ S t N ( d 2 + σ τ ) − K N ( d 2 ) ] = S t N ( d 1 ) − K e − r τ N ( d 2 ) □ \begin{aligned} C_t &= \mathbb{E}\left[ e^{-r\tau} \left( S_T-K \right)^+ |S_t \right] \\ \\ &= e^{-r\tau} \mathbb{E}\left[ \left( S_te^{\left( r- \frac{1}{2}\sigma^2 \right)\tau + \sigma\sqrt{\tau}\epsilon} - K \right)^+ | S_t \right] \\ \\ &= e^{-r\tau} \left[ \int_\mathbb{R} \left( S_te^{\left( r- \frac{1}{2}\sigma^2 \right)\tau + \sigma\sqrt{\tau}\epsilon} - K \right)^+ f_\epsilon(\epsilon) \, d\epsilon \right] \\ \\ &= e^{-r\tau} \left[ \int_\mathbb{R} \left( S_te^{\left( r- \frac{1}{2}\sigma^2 \right)\tau + \sigma\sqrt{\tau}\epsilon} - K \right)^+ \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\epsilon^2} \, d\epsilon \right] \\ \\ &= e^{-r\tau} \left[ \int_{-d_2}^\infty S_te^{\left( r- \frac{1}{2}\sigma^2 \right)\tau + \sigma\sqrt{\tau}\epsilon} \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\epsilon^2} \, d\epsilon \;-\; \int_{-d_2}^\infty K \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\epsilon^2} \, d\epsilon \right] \\ \\ &= e^{-r\tau} \left[ \int_{-d_2}^\infty \frac{1}{\sqrt{2\pi}}S_te^{\left( r- \frac{1}{2}\sigma^2 \right)\tau + \sigma\sqrt{\tau}\epsilon - \frac{1}{2}\epsilon^2} \, d\epsilon \;-\; K\left( 1-N(-d_2) \right) \right] \\ \\ &= e^{-r\tau} \left[ e^{r\tau}S_t \int_{-d_2}^\infty \frac{1}{\sqrt{2\pi}}e^{\frac{1}{2}\sigma^2 \tau + \sigma\sqrt{\tau}\epsilon - \frac{1}{2}\epsilon^2} \, d\epsilon \;-\; KN(d_2) \right] \\ \\ &= e^{-r\tau} \left[ e^{r\tau}S_t \int_{-d_2}^\infty \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\left( \epsilon-\sigma\sqrt{\tau} \right)^2} \, d\epsilon \;-\; KN(d_2) \right] \\ \\ &= e^{-r\tau} \left[ e^{r\tau}S_t \int_{-d_2-\sigma\sqrt{\tau}}^\infty \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}u^2} \, du \;-\; KN(d_2) \right] &u\coloneqq \epsilon-\sigma\sqrt{\tau} \\ \\ &= e^{-r\tau} \left[ e^{r\tau}S_t N(d_2+\sigma\sqrt{\tau}) - KN(d_2) \right] \\ \\ &= S_tN(d_1) - Ke^{-r\tau}N(d_2) &\square \end{aligned} Ct=E[erτ(STK)+St]=erτE[(Ste(r21σ2)τ+στ ϵK)+St]=erτ[R(Ste(r21σ2)τ+στ ϵK)+fϵ(ϵ)dϵ]=erτ[R(Ste(r21σ2)τ+στ ϵK)+2π 1e21ϵ2dϵ]=erτ[d2Ste(r21σ2)τ+στ ϵ2π 1e21ϵ2dϵd2K2π 1e21ϵ2dϵ]=erτ[d22π 1Ste(r21σ2)τ+στ ϵ21ϵ2dϵK(1N(d2))]=erτ[erτStd22π 1e21σ2τ+στ ϵ21ϵ2dϵKN(d2)]=erτ[erτStd22π 1e21(ϵστ )2dϵKN(d2)]=erτ[erτStd2στ 2π 1e21u2duKN(d2)]=erτ[erτStN(d2+στ )KN(d2)]=StN(d1)KerτN(d2)u:=ϵστ

Where − d 2 -d_2 d2 is the lower boundary of the integral to make S T > K S_T>K ST>K:
S T > K S t e ( r − 1 2 σ 2 ) τ + σ τ ϵ > K log ⁡ S t + ( r − 1 2 σ 2 ) τ + σ τ ϵ > log ⁡ K ϵ > log ⁡ K S − ( r − 1 2 σ 2 ) τ σ τ ≕ − d 2    ⟹    d 2 = log ⁡ S t K + ( r − 1 2 σ 2 ) τ σ τ d 1 ≔ d 2 + σ τ = log ⁡ S t K + ( r + 1 2 σ 2 ) τ σ τ \begin{aligned} S_T &> K \\ \\ S_te^{\left( r- \frac{1}{2}\sigma^2 \right)\tau + \sigma\sqrt{\tau}\epsilon} &> K \\ \\ \log S_t + \left( r-\frac{1}{2}\sigma^2 \right)\tau + \sigma\sqrt{\tau}\epsilon &> \log K \\ \\ \epsilon & > \frac{\log \frac{K}{S} - \left( r- \frac{1}{2}\sigma^2 \right)\tau}{\sigma\sqrt{\tau}} \eqqcolon -d_2 \\ \\ \\ \implies\qquad d_2=\frac{\log \frac{S_t}{K} + \left( r- \frac{1}{2}\sigma^2 \right)\tau}{\sigma\sqrt{\tau}}\qquad &d_1\coloneqq d_2+\sigma\sqrt{\tau}=\frac{\log \frac{S_t}{K} + \left( r+ \frac{1}{2}\sigma^2 \right)\tau}{\sigma\sqrt{\tau}} \end{aligned} STSte(r21σ2)τ+στ ϵlogSt+(r21σ2)τ+στ ϵϵd2=στ logKSt+(r21σ2)τ>K>K>logK>στ logSK(r21σ2)τ=:d2d1:=d2+στ =στ logKSt+(r+21σ2)τ

By Girsanov Theorem

C t = E [ e − r τ ( S T − K ) + ∣ S t ] = e − r τ E [ 1 S T > K S T ] ≕ A − e − r τ E [ 1 S T > K K ] ≕ B \begin{aligned} C_t &= \mathbb{E}\left[ e^{-r\tau} \left( S_T-K \right)^+ |S_t \right] \\ \\ &= \underset{\eqqcolon A}{e^{-r\tau}\mathbb{E}\left[ \mathbb{1}_{S_T>K}S_T \right]} - \underset{\eqqcolon B}{e^{-r\tau}\mathbb{E}\left[ \mathbb{1}_{S_T>K}K \right]} \end{aligned} Ct=E[erτ(STK)+St]==:AerτE[1ST>KST]=:BerτE[1ST>KK]
Notice we remove the conditional expectation notation only for convenience.

For part A A A, we may identify an exponential term as a Ridan-Nikodým derivative and simplify the expectation to a probability.
A = e − r τ E [ 1 S T > K S T ] = e − r τ E [ 1 S T > K S t e ( r − 1 2 σ 2 ) τ + σ W τ ] = e − r τ e r τ S t E [ 1 S T > K e 1 2 σ 2 τ + σ W τ ] = S t E [ 1 S T > K e 1 2 σ 2 τ + σ W τ ] notice  e 1 2 σ 2 τ + σ W τ  is a Ridan-Nikodym derivative with  Θ ( t ) = − σ = S t E [ 1 S T > K Z t ] = S t E ~ [ 1 S T > K ] = S t P ~ ( S T > K ) = S t P ~ ( S t e ( r − 1 2 σ 2 ) τ + σ W τ > K ) = S t P ~ ( S t e ( r − 1 2 σ 2 ) τ + σ ( W ~ t + σ τ ) > K ) W t = W ~ t − Θ ( t ) ,    Θ ( t ) = − σ = S t P ~ ( S t e ( r + 1 2 σ 2 ) τ + σ W ~ τ > K ) = S t P ~ ( ϵ ^ > log ⁡ K S t − ( r + 1 2 σ 2 ) τ σ τ ) = S t N ( d 1 ) \begin{aligned} A & = e^{-r\tau}\mathbb{E}\left[ \mathbb{1}_{S_T>K}S_T \right] \\ \\ &= e^{-r\tau}\mathbb{E}\left[ \mathbb{1}_{S_T>K}S_te^{\left( r- \frac{1}{2}\sigma^2 \right)\tau + \sigma W_\tau} \right] \\ \\ &= e^{-r\tau}e^{r\tau}S_t\mathbb{E}\left[ \mathbb{1}_{S_T>K}e^{\frac{1}{2}\sigma^2\tau + \sigma W_\tau} \right] \\ \\ &= S_t\mathbb{E}\left[ \mathbb{1}_{S_T>K}e^{\frac{1}{2}\sigma^2\tau + \sigma W_\tau} \right] &\text{notice $e^{\frac{1}{2}\sigma^2\tau + \sigma W_\tau}$ is a Ridan-Nikodym derivative with $\Theta(t)=-\sigma$} \\ \\ &= S_t\mathbb{E}\left[ \mathbb{1}_{S_T>K}Z_t \right] \\ \\ &= S_t\tilde{\mathbb{E}}\left[ \mathbb{1}_{S_T>K} \right] \\ \\ &= S_t\tilde{\mathbb{P}}\left( S_T>K \right) \\ \\ &= S_t\tilde{\mathbb{P}}\left( S_te^{\left( r- \frac{1}{2}\sigma^2 \right)\tau + \sigma W_\tau}>K \right) \\ \\ &= S_t\tilde{\mathbb{P}}\left( S_te^{\left( r- \frac{1}{2}\sigma^2 \right)\tau + \sigma \left( \tilde{W}_t+\sigma \tau \right)}>K \right) &W_t=\tilde{W}_t-\Theta(t),\;\Theta(t)=-\sigma \\ \\ &= S_t\tilde{\mathbb{P}}\left( S_te^{\left( r + \frac{1}{2}\sigma^2 \right)\tau + \sigma\tilde{W}_\tau}>K \right) \\ \\ &= S_t\tilde{\mathbb{P}}\left( \hat\epsilon > \frac{\log \frac{K}{S_t}-\left( r+\frac{1}{2}\sigma^2 \right)\tau}{\sigma\sqrt{\tau}} \right) \\ \\ &= S_t N(d_1) \end{aligned} A=erτE[1ST>KST]=erτE[1ST>KSte(r21σ2)τ+σWτ]=erτerτStE[1ST>Ke21σ2τ+σWτ]=StE[1ST>Ke21σ2τ+σWτ]=StE[1ST>KZt]=StE~[1ST>K]=StP~(ST>K)=StP~(Ste(r21σ2)τ+σWτ>K)=StP~(Ste(r21σ2)τ+σ(W~t+στ)>K)=StP~(Ste(r+21σ2)τ+σW~τ>K)=StP~(ϵ^>στ logStK(r+21σ2)τ)=StN(d1)notice e21σ2τ+σWτ is a Ridan-Nikodym derivative with Θ(t)=σWt=W~tΘ(t),Θ(t)=σ

The other part is easy:

B = e − r τ E [ 1 S T > K K ] = e − r τ K E [ 1 S T > K ] = e − r τ K P ( S T > K ) = e − r τ K N ( d 2 ) \begin{aligned} B &= e^{-r\tau}\mathbb{E}\left[ \mathbb{1}_{S_T>K}K \right] \\ \\ &= e^{-r\tau}K\mathbb{E}\left[ \mathbb{1}_{S_T>K} \right] \\ \\ &= e^{-r\tau}K\mathbb{P}\left( S_T>K \right) \\ \\ &= e^{-r\tau}KN(d_2) \end{aligned} B=erτE[1ST>KK]=erτKE[1ST>K]=erτKP(ST>K)=erτKN(d2)

So we have the result:

C t = e − r τ E [ 1 S T > K S T ] ≕ A − e − r τ E [ 1 S T > K K ] ≕ B = S t N ( d 1 ) − K e − r τ N ( d 2 ) □ \begin{aligned} C_t &= \underset{\eqqcolon A}{e^{-r\tau}\mathbb{E}\left[ \mathbb{1}_{S_T>K}S_T \right]} - \underset{\eqqcolon B}{e^{-r\tau}\mathbb{E}\left[ \mathbb{1}_{S_T>K}K \right]} \\ \\ &= S_tN(d_1) - Ke^{-r\tau} N(d_2)&\square \end{aligned} Ct==:AerτE[1ST>KST]=:BerτE[1ST>KK]=StN(d1)KerτN(d2)

自己写的。之后有时间会翻译成中文,如有错误欢迎指出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值