期权定价模型(如Black-Scholes模型)和利率模型中的单因子模型的Python实现案例

一:期权定价模型(如Black-Scholes模型)的实现

期权定价模型(如Black-Scholes模型)是用来确定期权合理价格的数学模型。这些模型基于一定的假设,考虑了多种因素,如标的资产价格、期权的行权价格、期权的到期时间、无风险利率以及标的资产的波动性等。

3acec47b75fb456aae4f3deb48be6fb4.png

接下来将使用Python来实现这个模型,并计算一个欧式看涨期权的价格。

import math
import scipy.stats as stats

# Black-Scholes 欧式看涨期权定价模型
def black_scholes_call(S, K, T, r, sigma):
    """
    S: 股票当前价格
    K: 执行价格
    T: 到期时间(以年为单位)
    r: 无风险利率
    sigma: 股票价格的波动率
    """
    # 计算d1和d2
    d1 = (math.log(S / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * math.sqrt(T))
    d2 = d1 - sigma * math.sqrt(T)

    # 计算看涨期权价格
    call_price = S * stats.norm.cdf(d1) - K * math.exp(-r * T) * stats.norm.cdf(d2)
    return call_price

# 示例参数
S = 100       # 股票当前价格
K = 100       # 执行价格
T = 1         # 到期时间(1年)
r = 0.05      # 无风险利率(5%)
sigma = 0.2   # 股票价格的波动率(20%)

# 计算欧式看涨期权的价格
call_price = black_scholes_call(S, K, T, r, sigma)
call_price

代码中实现的Black-Scholes模型使用了以下数学公式:

be4836e1e550409695fba18a51234fac.png

代码中使用了Python的math模块来计算自然对数和平方根,以及scipy.stats模块中的norm.cdf函数来计算标准正态分布的累积分布函数。这些函数和公式共同实现了Black-Scholes模型的欧式看涨期权定价。

二:利率模型中的单因子模型的实现

利率模型是金融数学中用于描述和预测利率变化的数学模型。这些模型通常用于定价固定收益证券、利率衍生品、以及进行资产负债管理等。单因子模型是其中的一类常见的利率模型。单因子模型假设利率变化只受一个随机过程的影响,包括Vasicek模型和Cox-Ingersoll-Ross (CIR) 模型。

1:Vasicek模型

726ad28aa30d44fcb06a18c51b1b9207.png

接下来举一个用于模拟Vasicek模型的短期利率路径的实例:

导入必要的库

import numpy as np
import matplotlib.pyplot as plt

这两行代码导入了numpymatplotlib.pyplotnumpy是一个强大的数学库,用于进行数值计算,而matplotlib.pyplot是用于绘图的库。

定义Vasicek模型的参数

theta = 0.05  # 长期均值
k = 0.3       # 均值回归速度
sigma = 0.1   # 波动率
T = 10.0      # 模拟的总时间
N = 1000      # 时间步数
dt = T / N    # 时间步长
t = np.linspace(0, T, N)

这里定义了Vasicek模型的基本参数:长期均值theta、均值回归速度k、波动率sigma,以及模拟的总时间T、时间步数N和每个时间步的长度dtt是一个数组,包含了从0到TN个等间距时间点。

初始化利率和随机过程

r = np.zeros(N)
W = np.random.normal(size=N) * np.sqrt(dt)

r是一个长度为N的数组,用于存储每个时间点的利率值。初始时,所有值都设为0。W是一个高斯随机过程,用于模拟随机波动。这里使用了np.random.normal函数生成标准正态分布的随机数,并乘以sqrt(dt)来调整其尺度。

Vasicek模型模拟

for i in range(1, N):
    dr = k * (theta - r[i-1]) * dt + sigma * W[i]
    r[i] = r[i-1] + dr

这是一个循环,用于计算每个时间点的利率。dr是利率的变化量,由两部分组成:均值回归部分k * (theta - r[i-1]) * dt和随机波动部分sigma * W[i]。然后将这个变化量加到前一个时间点的利率上,得到当前时间点的利率。

绘制利率路径

plt.plot(t, r)
plt.xlabel('Time')
plt.ylabel('Short Rate')
plt.title('Vasicek Model Simulation')
plt.show()

最后,使用matplotlib.pyplot库绘制利率路径的图形。plt.plot(t, r)绘制了利率随时间的变化曲线。plt.xlabelplt.ylabelplt.title设置了图形的x轴标签、y轴标签和标题。plt.show()显示了图形:

00f84dcbb90a4e65ab19ae65cb00f3e4.png

这段代码的总体目的是模拟Vasicek模型描述的短期利率随时间的波动,并可视化这条路径。

2:Cox-Ingersoll-Ross (CIR) 模型

ab9b652b7fe14242b8d8cc34d0c62a56.png

接下来举一个模拟Cox-Ingersoll-Ross (CIR) 模型的短期利率路径的实例:

导入必要的库

import numpy as np
import matplotlib.pyplot as plt

这两行代码导入了numpymatplotlib.pyplotnumpy是一个强大的数学库,用于进行数值计算,而matplotlib.pyplot是用于绘图的库。

定义CIR模型的参数

theta = 0.05  # 长期均值
k = 0.3       # 均值回归速度
sigma = 0.1   # 波动率
r0 = 0.04     # 初始利率
T = 10.0      # 模拟的总时间
N = 1000      # 时间步数
dt = T / N    # 时间步长
t = np.linspace(0, T, N)

这里定义了CIR模型的基本参数:长期均值theta、均值回归速度k、波动率sigma、初始利率r0,以及模拟的总时间T、时间步数N和每个时间步的长度dtt是一个数组,包含了从0到TN个等间距时间点。

初始化利率和随机过程

r = np.zeros(N)
Z = np.random.normal(size=N)

r是一个长度为N的数组,用于存储每个时间点的利率值。初始时,所有值都设为0。Z是一个高斯随机过程,用于模拟随机波动。这里使用了np.random.normal函数生成标准正态分布的随机数。

CIR模型模拟

for i in range(1, N):
    dr = k * (theta - r[i-1]) * dt + sigma * np.sqrt(r[i-1] * dt) * Z[i]
    r[i] = np.maximum(r[i-1] + dr, 0)  # 保证利率非负

这是一个循环,用于计算每个时间点的利率。dr是利率的变化量,由两部分组成:均值回归部分k * (theta - r[i-1]) * dt和随机波动部分sigma * np.sqrt(r[i-1] * dt) * Z[i]。然后将这个变化量加到前一个时间点的利率上,得到当前时间点的利率。由于CIR模型要求利率非负,所以使用np.maximum函数确保利率不会小于0。

绘制利率路径

plt.plot(t, r)
plt.xlabel('Time')
plt.ylabel('Short Rate')
plt.title('CIR Model Simulation')
plt.show()

最后,使用matplotlib.pyplot库绘制利率路径的图形。plt.plot(t, r)绘制了利率随时间的变化曲线。plt.xlabelplt.ylabelplt.title设置了图形的x轴标签、y轴标签和标题。plt.show()显示了图形:

45c803ca2cd14467b22417ff847c16f0.png

这段代码的总体目的是模拟CIR模型描述的短期利率随时间的波动,并可视化这条路径。与Vasicek模型不同的是,CIR模型考虑了利率的非负性,这使得它在描述实际利率动态时更加准确。

以上演示了期权定价模型(如Black-Scholes模型)和利率模型中的单因子模型的Python的案例的实现过程。

 

想要探索更多元化的数据分析视角,可以关注之前发布的相关内容。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值