【Shecan Notes】从二叉树出发浅谈风险中性定价

本文避开复杂理论,通过二叉树模型探讨风险中性定价概念。在无套利假设下,文章阐述了如何利用二叉树定价原理反推出期权价值,并解释了风险中性概率的推导,强调了在衍生品定价中转换到风险中性测度的重要性。
摘要由CSDN通过智能技术生成

从二叉树出发浅谈风险中性定价

​ 有效市场假说的一个重要应用就是资产定价,根据Fama的有效市场假说,所有信息(包括未来的信息)都已经充分反映在当前的价格当中,因而不存在无风险套利的机会。在微观经济学中,我们学过均衡定价理论,即所有的套利机会最终都会消失,并回归到其均衡水平(供求相等的状态)。在现代投资组合管理中,我们学过资本资产定价模型(CAPM)和套利定价模型(APT),而套利定价理论的理论基础即是一价定理,即同样状态下的资产不可能有两个价格,否则存在套利的机会,据此我们可以理解为何均衡的价格都在证券市场线上,即一个风险(波动率)状态下的同一资产不可能存在两个价格。在衍生品定价理论中,我们学过风险中性定价,即衍生品价值不依赖于经济状态的改变而改变,均衡状态下,期望收益等同于投资于无风险的债券。以上的定价理论均可以归纳于无套利定价理论。本文章回避复杂的理论推导,结合期权定价,浅谈作者个人对风险中性定价的理解。

​ 市场上商品和股票的价格通常是由供求关系所决定的,但是对于一些金融产品, 比如说投资组合、金融衍生品等,其价值的衡量通常可以用已知产品(股票、债券等)来进行复制,这里说的复制即是用已知的资产构造投资组合来模拟未知资产的价值状态。比如说,如果我们要复制期权的价值,我们可通过投资标的资产和无风险债券构成的自融资组合来模拟其价值。这里说的自融资即是说,假设初始投入的财富为 X n X_n Xn, 在之后的投资中,不需要投入更多的资金,而是对初始的资金进行一个再分配。即 Δ n S n \Delta_nS_n ΔnSn投资于股票,而 X n − Δ n S n X_n-\Delta_n S_n XnΔnSn投资于无风险债券,即
X n = Δ n S n + X n − Δ n S n X_n=\Delta_n S_n+X_n-\Delta_n S_n Xn=ΔnSn+XnΔnSn
n + 1 n+1 n+1期, 考虑我们所构建投资组合的价值:
X n + 1 = Δ n S n + 1 + ( X n − Δ n S n ) ( 1 + r ) X_{n+1}=\Delta_n S_{n+1}+(X_n-\Delta_n S_n)(1+r) Xn+1=ΔnSn+1+(XnΔnS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值