数模笔记_多变量最优化的拉格朗日乘子方法中的灵敏性分析和影子价格

本文探讨了在多变量最优化问题中,使用拉格朗日乘子法进行有约束条件的优化时的灵敏性分析和影子价格。通过两种方法分析弹性价格系数的影响,包括全局性的变化和通过链式法则的数学本质理解。同时,介绍了影子价格的概念,它是衡量增加生产能力对利润影响的指标,对于决策制定具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Date: 2_21
Name: Guo Yehao
Theme: Sensitivity Analysis and Shadow Price in Optimality with multiple variables
Reference: 数学建模方法与分析(华章)

​ 承接之前的多变量最优化问题中,用拉格朗日乘子的方法讨论有约束条件的最优化问题,我们讨论这种范式下的灵敏性分析,分为弹性价格系数和约束条件的分析。

  1. 首先是分析弹性价格系数,和无约束条件下的最优化问题相比,仍然是分析三个量:两个决策变量和目标值。我们有两条线索去讨论:
  • 第一种显得机械和普遍。考察约束条件在这种情况下的所起的作用,虽然它增加了我们之前的讨论的难度,但是不要被迷惑,它所起的真正作用就是带来求解过程和解的形式的改变。将价格弹性系数用参数的形式代替,依然用常规的拉格朗日乘子方法求解即可,我们可以表示出两个决策变量,接着赋值表示出目标值,用计算机代数系统做形式计算,表示出灵敏度系数,在给定点(我们在主体部分求解出的点)求出灵敏性系数的数值,对灵敏性系数的实际意义稍加解释。

    再在一个较大范围分析价格弹性系数的影响,绘制两个决策变量和目标值关于价格弹性系数的曲线图。这可能与某些人对于灵敏性分析的"微小改变"认识不同,如果要强扣“帽子”,也许可以叫做稳健性分析吧。如果不谈什么形式上的“帽子”,从实际的角度去思考,对这个大范围问题的讨论有实际价值,它能够给出当价格弹性系数改变时,各个量的全局性改变。

  • 第二种方法考虑到了梯度的几何意义,能够提供给我们在数学本质上的further

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值