数模笔记_多变量最优化计算之牛顿法

本文介绍了在多变量最优化中,牛顿法作为一种基于梯度的快速收敛算法,其数学原理是微分的线性近似。通过不断迭代超平面来逼近原始曲面,求解复杂函数的驻点。牛顿法需要一个初值,可通过全局方法如随机搜索算法获得。在解决生产收益等实际问题时,复杂的函数关系使得解析解难以求得,而牛顿法能有效提高精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Date: 2_22
Name: Guo Yehao
Theme: Calculation in Optimality with multiple variables
Reference: 数学建模方法与分析(华章)

在上一节中,我们讨论多变量最优化计算中的随机搜索算法,它的精度并不是众多算法中最高的。在精度问题上,有的时候问题本身就带有明显的误差性,以至于我们不能将其忽略,比如上一节消防站部署的问题,我们在区域划分时就有了误差,因此我们并不需要对结果要求很高的精确度,所以用一些比较粗略的算法就可以满足要求,比如随机搜索算法;然而有的时候,问题本身不带有离散的特征,比如连续型的题目,或者误差不明显表现出来,以致于我们可以当作数据没有可疑数字(或者大物实验中称为可靠位数无穷多位),这个时候我们就不能仅仅用粗略一点的算法了,我们需要一种更加精确的算法。

在本节中讨论了多变量函数的牛顿法,它是基于梯度的快速收敛算法的一种,数学思想是微分的线性近似,几何上讲是用超平面(低维情况下就是切线和切平面)近似原始曲面,用这种线性近似不断迭代,迭代次数决定结果的精度。和我们在单变量最优化问题中讨论的一样,用牛顿法快速收敛之前需要一个零点方程的近似解,这个近似解通过某些全局方法产生。低维的情况可以通过图像法直接观察得出,高维的情况就需要用到随机搜索算法了。

问题的背景来源于生产收益问题,价格和数量之间有着较复杂的函数关系,最终我们得到收益的复杂函数表达式,如书中所示。通过图像法,我们得到目标函数由唯一取到极大值的内点。我们现在的目的是求解函数的驻点&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值