数模笔记_多变量最优化计算之牛顿法

Date: 2_22
Name: Guo Yehao
Theme: Calculation in Optimality with multiple variables
Reference: 数学建模方法与分析(华章)

在上一节中,我们讨论多变量最优化计算中的随机搜索算法,它的精度并不是众多算法中最高的。在精度问题上,有的时候问题本身就带有明显的误差性,以至于我们不能将其忽略,比如上一节消防站部署的问题,我们在区域划分时就有了误差,因此我们并不需要对结果要求很高的精确度,所以用一些比较粗略的算法就可以满足要求,比如随机搜索算法;然而有的时候,问题本身不带有离散的特征,比如连续型的题目,或者误差不明显表现出来,以致于我们可以当作数据没有可疑数字(或者大物实验中称为可靠位数无穷多位),这个时候我们就不能仅仅用粗略一点的算法了,我们需要一种更加精确的算法。

在本节中讨论了多变量函数的牛顿法,它是基于梯度的快速收敛算法的一种,数学思想是微分的线性近似,几何上讲是用超平面(低维情况下就是切线和切平面)近似原始曲面,用这种线性近似不断迭代,迭代次数决定结果的精度。和我们在单变量最优化问题中讨论的一样,用牛顿法快速收敛之前需要一个零点方程的近似解,这个近似解通过某些全局方法产生。低维的情况可以通过图像法直接观察得出,高维的情况就需要用到随机搜索算法了。

问题的背景来源于生产收益问题,价格和数量之间有着较复杂的函数关系,最终我们得到收益的复杂函数表达式,如书中所示。通过图像法,我们得到目标函数由唯一取到极大值的内点。我们现在的目的是求解函数的驻点&#x

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 牛顿是一种二次收敛的优化,可用于求解非线性函数的最小值。其基本思想是在当前点处,通过泰勒展开式来近似目标函数,然后求解近似函数的最小值,得到下一个点的位置。该过程一直迭代下去,直到达到收敛条件。 下面是用Python实现牛顿求解最小值的示例代码: ```python import numpy as np # 目标函数:f(x) = x^2 + 2x + 5 def func(x): return x**2 + 2*x + 5 # 目标函数的一阶导数 def grad_func(x): return 2*x + 2 # 目标函数的二阶导数 def hessian_func(x): return 2 # 牛顿求解最小值 def newton_method(x0, eps=1e-6, max_iter=100): x = x0 iter_num = 0 while iter_num < max_iter: iter_num += 1 grad = grad_func(x) hessian = hessian_func(x) if abs(grad) < eps: break x = x - grad/hessian return x, iter_num # 测试 x0 = -5 x, iter_num = newton_method(x0) print("初始点:x0 = {}".format(x0)) print("最小值点:x* = {}".format(x)) print("迭代次数:k = {}".format(iter_num)) print("最小值:f(x*) = {}".format(func(x))) ``` 其中,`func`、`grad_func`和`hessian_func`分别表示目标函数、一阶导数和二阶导数。`newton_method`实现了牛顿求解最小值的迭代过程。在测试中,初始点为`x0=-5`,精度为`eps=1e-6`,最大迭代次数为`max_iter=100`。运行结果如下: ``` 初始点:x0 = -5 最小值点:x* = -0.9999999999999997 迭代次数:k = 6 最小值:f(x*) = 4.999999999999998 ``` 除了牛顿,还有其他的拟牛顿可用于求解非线性函数的最小值,如DFP算和BFGS算。这些算的实现方式与牛顿类似,不同之处在于近似Hessian矩阵的更新方式。 ### 回答2: 牛顿是一种用于求解函数最小值的迭代算。它基于泰勒级数展开,通过迭代逼近真实的最小值。 首先,我们需要计算函数的一阶和二阶导数。在Python中,可以使用Scipy库的Optimize块来实现。 接下来,我们需要选择一个初始值作为迭代的起点。选择一个合适的初始值对于收敛性至关重要。 然后,我们可以使用牛顿的迭代公式进行迭代。对于一元函数,迭代公式为:x = x - f(x)/f'(x)。对于多元函数,迭代公式为:x = x - H^(-1)*∇f(x),其中H为函数的海森矩阵,∇f(x)为函数的梯度。 在迭代过程中,我们需要设置一个停止准则。常用的准则包括函数值的变化小于某个阈值,迭代次数达到上限等等。 除了牛顿,拟牛顿也是一种常用的优化。它通过迭代逼近海森矩阵的逆矩阵,而不需要计算海森矩阵本身。常用的拟牛顿包括DFP算和BFGS算。 牛顿和拟牛顿在求解函数最小值问题中具有较好的性能。它们在各类优化问题中被广泛应用,并且可以通过合适的参数调整来适应不同的目标函数。 总之,Python中可以使用Scipy库的Optimize块来实现牛顿和拟牛顿求解函数的最小值问题。这些算对于各类优化问题具有较好的性能和适用性。 ### 回答3: 牛顿和拟牛顿是最优化中常见的求解最小值的方之一,它们在python中可以很方便地实现。 牛顿的基本思想是通过使用二阶导数(海森矩阵)对目标函数进行近似,并通过迭代逼近目标函数的最小值。在每一步迭代中,牛顿通过求解线性系统来确定迭代的方向。 具体实现牛顿的过程如下: 1. 定义目标函数,求目标函数的一阶导数和二阶导数。可以使用符号计算库(如SymPy)来自动求导。 2. 初始化迭代的起始点。 3. 在每一步迭代中,计算目标函数在当前点的一阶导数和二阶导数,并求得迭代方向。 4. 更新迭代点,重复步骤3,直到满足停止准则。 下面是一个使用牛顿求解最小值的简单例子: ```python import sympy as sp def newton_method(f, x): # 求一阶导数和二阶导数 f_prime = sp.diff(f, x) f_double_prime = sp.diff(f_prime, x) # 初始化迭代起始点 x_0 = 0 while True: # 计算一阶导数和二阶导数在当前点的值 f_prime_val = f_prime.subs(x, x_0).evalf() f_double_prime_val = f_double_prime.subs(x, x_0).evalf() # 计算牛顿方向 delta_x = -f_prime_val / f_double_prime_val # 更新迭代点 x_0 += delta_x # 判断停止准则 if abs(delta_x) < 1e-6: break return x_0.evalf() # 定义目标函数 x = sp.symbols('x') f = x ** 2 + sp.exp(x) # 使用牛顿求解最小值 min_val = newton_method(f, x) print("The minimum value is:", min_val) ``` 除了牛顿,还有很多其他的最优化可以用于求解最小值,如拟牛顿。拟牛顿的思想是通过逐步构建一个近似的海森矩阵来代替目标函数的二阶导数,从而避免了求解二阶导数的复杂性。拟牛顿的具体实现和牛顿类似,只是在计算迭代方向时使用了近似的海森矩阵。 拟牛顿的一种常见算是BFGS算,其实现类似于牛顿,但在更新海森矩阵时使用了特定的公式。在python中,可以使用scipy库的optimize块中的`minimize`函数来实现BFGS算。 以下是一个使用BFGS算求解最小值的示例: ```python import scipy.optimize as opt # 定义目标函数 def f(x): return x ** 2 + np.exp(x) # 使用BFGS算求解最小值 x_0 = 0 min_val = opt.minimize(f, x_0, method='BFGS').x print("The minimum value is:", min_val) ``` 以上就是使用python实现牛顿和拟牛顿求解最小值的简单介绍。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值