数学建模学习记录之一:拉格朗日乘数法

假定求目标函数: u = f ( x , y ) u=f(x,y) u=f(x,y)在条件 φ ( x , y ) = 0 φ(x,y)=0 φ(x,y)=0下的极值。

  1. M 0 ( x 0 , y 0 ) M_0(x_0,y_0) M0(x0,y0)为所求的极值点,且在点 M 0 M_0 M0的某一邻域内 f f f φ φ φ有连续的一阶偏导数, φ y ( x 0 , y 0 ) ≠ 0 φ_y(x_0,y_0)≠0 φy(x0,y0)=0
  2. 由隐函数存在定理可知,由 φ ( x 0 , y 0 ) = 0 φ(x_0,y_0)=0 φ(x0,y0)=0确定了单值可导函数 y = y ( x ) y=y(x) y=y(x)将其代入 u = f ( x , y ) u=f(x,y) u=f(x,y)得: u = f [ x , y ( x ) ] u=f[x,y(x)] u=f[x,y(x)]

由极值的必要条件得:
d u d x ∣ x = x 0 = f x ( x 0 , y 0 ) + f y ( x 0 , y 0 ) d y d x ∣ x = x 0 = 0 \frac{du}{dx}|_{x=x_0}=f_x(x_0,y_0)+f_y(x_0,y_0)\frac{dy}{dx}|_{x=x_0}=0 dxdux=x0=fx(x0,y0)+fy(x0,y0)dxdyx=x0=0 ∗ *
又由 φ ( x , y ) = 0 φ(x,y)=0 φ(x,y)=0得: φ x ( x 0 , y 0 ) + φ y ( x 0 , y 0 ) d y d x ∣ x = x 0 = 0 φ_x(x_0,y_0)+φ_y(x_0,y_0)\frac{dy}{dx}|_{x=x_0}=0 φx(x0,y0)+φy(x0,y0)dxdyx=x0=0【隐函数求导】
d y d x ∣ x = x 0 = − φ x ( x 0 , y 0 ) φ y ( x 0 , y 0 ) \frac{d_y}{d_x}|_{x=x_0}=-\frac{φ_x(x_0,y_0)}{φ_y(x_0,y_0)} dxdyx=x0=φy(x0,y0)φx(x0,y0),代入 ∗ * 式得, f x ( x 0 , y 0 ) − f y ( x 0 , y 0 ) φ x ( x 0 , y 0 ) φ y ( x 0 , y 0 ) = 0 f_x(x_0,y_0)-f_y(x_0,y_0)\frac{φ_x(x_0,y_0)}{φ_y(x_0,y_0)}=0 fx(x0,y0)fy(x0,y0)φy(x0,y0)φx(x0,y0)=0

− λ = f y ( x 0 , y 0 ) φ y ( x 0 , y 0 ) -λ=\frac{f_y(x_0,y_0)}{φ_y(x_0,y_0)} λ=φy(x0,y0)fy(x0,y0)
上式可以改写为: f x ( x 0 , y 0 ) + λ φ x ( x 0 , y 0 ) = 0 f_x(x_0,y_0)+λφ_x(x_0,y_0)=0 fx(x0,y0)+λφx(x0,y0)=0 ∗ ∗ ∗ ***

∗ * ∗ ∗ ∗ *** 可以求得方程组:
f x ( x 0 , y 0 ) + λ φ x ( x 0 , y 0 ) = 0 f_x(x_0,y_0)+λφ_x(x_0,y_0)=0 fx(x0,y0)+λφx(x0,y0)=0
f y ( x 0 , y 0 ) + λ φ y ( x 0 , y 0 ) = 0 f_y(x_0,y_0)+λφ_y(x_0,y_0)=0 fy(x0,y0)+λφy(x0,y0)=0
φ ( x 0 , y 0 ) = 0 φ(x_0,y_0)=0 φ(x0,y0)=0
我们构造函数 F ( x , y , λ ) = f ( x , y ) + λ φ ( x , y ) F(x,y,λ)=f(x,y)+λφ(x,y) F(x,y,λ)=f(x,y)+λφ(x,y)
F x = f x + λ φ x = 0 F_x=f_x+λφ_x=0 Fx=fx+λφx=0
F y = f y + λ φ y = 0 F_y=f_y+λφ_y=0 Fy=fy+λφy=0
F λ = φ = 0 F_λ=φ=0 Fλ=φ=0
从中解出 ( x , y ) (x,y) (x,y)即是可能的极值点
这种方法称之为拉格朗日乘数法。
并且支持类似的推广。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值