分段函数线性化

对于分段函数:

\left\{\begin{matrix}f_1(x) & a< x\leq b\\ f_2(x) & c< x\leq d\\ f_3(x) & e< x\leq f \end{matrix}\right.

线性化:

f(x)=\alpha _1f_1(x)+\alpha _2f_2(x)+\alpha _3f_3(x)

s.t. \ a\alpha _1< x\leq M(1-\alpha _1)+b \\c\alpha _2< x\leq M(1-\alpha _2)+d \\e\alpha _3< x\leq M(1-\alpha _3)+f\\\alpha _1,\alpha _2,\alpha _3\in \begin{Bmatrix} 0 , 1 \end{Bmatrix} \\ \alpha _1+\alpha _2+\alpha _3=1

以下是使用Matlab进行分段函数线性化的示例代码: ```matlab % 定义分段函数 x = linspace(-5, 5, 100); y = zeros(size(x)); for i = 1:length(x) if x(i) < -2 y(i) = 0; elseif x(i) < 0 y(i) = x(i) + 2; elseif x(i) < 2 y(i) = -x(i) + 2; else y(i) = 0; end end % 绘制原始函数 figure; plot(x, y); title('原始函数'); % 线性化分段函数 x0 = 0; % 线性化点 y0 = x0 + 2; % 线性化点处的函数值 k1 = (y0 - 0) / (x0 - (-2)); % 前半段的斜率 k2 = (0 - y0) / (2 - x0); % 后半段的斜率 x1 = linspace(-5, x0, 100); % 前半段的线性化区间 x2 = linspace(x0, 5, 100); % 后半段的线性化区间 y1 = k1 * (x1 - (-2)); % 前半段的线性化函数 y2 = k2 * (x2 - x0) + y0; % 后半段的线性化函数 % 绘制线性化函数 figure; plot(x, y, x1, y1, x2, y2); title('线性化函数'); legend('原始函数', '线性化函数'); ``` 在这个示例中,我们定义了一个分段函数,并使用`for`循环将其在`[−5,5]`范围内离散化为100个点。然后,我们使用Matlab的`plot`函数绘制了原始分段函数。 接下来,我们选择一个线性化点`x0`,并计算出前半段和后半段的斜率。然后,我们使用`linspace`函数在`[-5,x0]`和`[x0,5]`范围内分别计算出前半段和后半段的线性化函数。最后,我们使用`plot`函数将原始函数和线性化函数一起绘制出来。 注意,这个示例只是一个简单的示例,实际应用中可能需要更复杂的分段函数线性化方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值