NVIDIA rtx3070显卡驱动、算力和cuda版本匹配关系

在尝试使用RTX3070显卡进行CUDA运算时遇到RuntimeError,错误提示为CUDAerror:nokernelimageisavailableforexecutiononthedevice。问题可能出在版本不匹配上,当前CUDA版本为11.4,显卡驱动对应的是CUDA 11.x。解决方案可能是更新到支持RTX3070的CUDA版本,例如11.1或更高。检查并确保PyTorch版本与CUDA版本兼容,以解决此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:3070装好显卡驱动,cuda之后无法使用,抛出异常:RuntimeError: CUDA error: no kernel image is available for execution on the device

原因:版本之间不匹配

我的显卡驱动:

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.103.01   Driver Version: 470.103.01   CUDA Version: 11.4     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  Off  | 00000000:1A:00.0 Off |                  N/A |
| 30%   35C    P8    15W / 220W |    497MiB /  7982MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   1  NVIDIA GeForce ...  Off  | 00000000:3D:00.0 Off |                  N/A |
| 30%   30C    P8    18W / 220W |      8MiB /  7982MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   2  NVIDIA GeForce ...  Off  | 00000000:89:00.0 Off |                  N/A |
| 30%   30C    P8    20W / 220W |      8MiB /  7982MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   3  NVIDIA GeForce ...  Off  | 00000000:B2:00.0 Off |                  N/A |
| 30%   31C    P8    23W / 220W |      8MiB /  7982MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

显卡算力查看:链接

3070 算力:8.6

torch版本所需算力查看方法:

import torch
torch.cuda.get_arch_list()

torch所需算力(用前面的方法试出来的)

package	pyton	cuda	cudnn	architectures
pytorch-1.0.0	py3.7	cuda10.0.130	cudnn7.4.1_1	sm_30, sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.0.0	py3.7	cuda8.0.61	cudnn7.1.2_1	sm_20, sm_35, sm_37, sm_50, sm_52, sm_53, sm_60, sm_61
pytorch-1.0.0	py3.7	cuda9.0.176	cudnn7.4.1_1	sm_35, sm_37, sm_50, sm_52, sm_53, sm_60, sm_61, sm_70
pytorch-1.0.1	py3.7	cuda10.0.130	cudnn7.4.2_0	sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.0.1	py3.7	cuda10.0.130	cudnn7.4.2_2	sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.0.1	py3.7	cuda8.0.61	cudnn7.1.2_0	sm_35, sm_37, sm_50, sm_52, sm_53, sm_60, sm_61
pytorch-1.0.1	py3.7	cuda8.0.61	cudnn7.1.2_2	sm_35, sm_37, sm_50, sm_52, sm_53, sm_60, sm_61
pytorch-1.0.1	py3.7	cuda9.0.176	cudnn7.4.2_0	sm_35, sm_50, sm_60, sm_61, sm_70
pytorch-1.0.1	py3.7	cuda9.0.176	cudnn7.4.2_2	sm_35, sm_50, sm_60, sm_70
pytorch-1.1.0	py3.7	cuda10.0.130	cudnn7.5.1_0	sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.1.0	py3.7	cuda9.0.176	cudnn7.5.1_0	sm_35, sm_50, sm_60, sm_61, sm_70
pytorch-1.2.0	py3.7	cuda9.2.148	cudnn7.6.2_0	sm_35, sm_50, sm_60, sm_61, sm_70
pytorch-1.2.0	py3.7	cuda10.0.130	cudnn7.6.2_0	sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.2.0	py3.7	cuda9.2.148	cudnn7.6.2_0	sm_35, sm_50, sm_60, sm_61, sm_70
pytorch-1.3.0	py3.7	cuda10.0.130	cudnn7.6.3_0	sm_30, sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.3.0	py3.7	cuda10.1.243	cudnn7.6.3_0	sm_30, sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.3.0	py3.7	cuda9.2.148	cudnn7.6.3_0	sm_35, sm_50, sm_60, sm_61, sm_70
pytorch-1.3.1	py3.7	cuda10.0.130	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.3.1	py3.7	cuda10.1.243	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.3.1	py3.7	cuda9.2.148	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.4.0	py3.7	cuda10.0.130	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.4.0	py3.7	cuda10.1.243	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.4.0	py3.7	cuda9.2.148	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.5.0	py3.7	cuda10.1.243	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.5.0	py3.7	cuda10.2.89	cudnn7.6.5_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.5.0	py3.7	cuda9.2.148	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.5.1	py3.7	cuda10.1.243	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.5.1	py3.7	cuda10.2.89	cudnn7.6.5_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.5.1	py3.7	cuda9.2.148	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.6.0	py3.7	cuda10.1.243	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.6.0	py3.7	cuda10.2.89	cudnn7.6.5_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.6.0	py3.7	cuda9.2.148	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.7.0	py3.7	cuda10.1.243	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.7.0	py3.7	cuda10.2.89	cudnn7.6.5_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.7.0	py3.7	cuda11.0.221	cudnn8.0.3_0	sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80
pytorch-1.7.0	py3.7	cuda9.2.148	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.7.1	py3.7	cuda10.1.243	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.7.1	py3.7	cuda10.2.89	cudnn7.6.5_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.7.1	py3.7	cuda11.0.221	cudnn8.0.5_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80
pytorch-1.7.1	py3.7	cuda9.2.148	cudnn7.6.3_0	sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.8.0	py3.7	cuda10.1	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.8.0	py3.7	cuda10.2	cudnn7.6.5_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.8.0	py3.7	cuda11.1	cudnn8.0.5_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.8.1	py3.7	cuda10.1	cudnn7.6.3_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.8.1	py3.7	cuda10.2	cudnn7.6.5_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.8.1	py3.7	cuda11.1	cudnn8.0.5_0	sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86

结论:rtx 3070 需要安装cuda11以上(也许并不绝对,我猜的)

references:

  1. https://blog.csdn.net/weixin_42642296/article/details/115598760
  2. https://developer.nvidia.com/zh-cn/cuda-gpus#compute



±----------------------------------------------------------------------------+
| NVIDIA-SMI 470.103.01 Driver Version: 470.103.01 CUDA Version: 11.4 |
|-------------------------------±---------------------±---------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=++==============|
| 0 NVIDIA GeForce … Off | 00000000:1A:00.0 Off | N/A |
| 30% 35C P8 15W / 220W | 497MiB / 7982MiB | 0% Default |
| | | N/A |
±------------------------------±---------------------±---------------------+
| 1 NVIDIA GeForce … Off | 00000000:3D:00.0 Off | N/A |
| 30% 30C P8 18W / 220W | 8MiB / 7982MiB | 0% Default |
| | | N/A |
±------------------------------±---------------------±---------------------+
| 2 NVIDIA GeForce … Off | 00000000:89:00.0 Off | N/A |
| 30% 30C P8 20W / 220W | 8MiB / 7982MiB | 0% Default |
| | | N/A |
±------------------------------±---------------------±---------------------+
| 3 NVIDIA GeForce … Off | 00000000:B2:00.0 Off | N/A |
| 30% 31C P8 23W / 220W | 8MiB / 7982MiB | 0% Default |
| | | N/A |
±------------------------------±---------------------±---------------------+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

放羊Wa

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值