问题描述:3070装好显卡驱动,cuda之后无法使用,抛出异常:RuntimeError: CUDA error: no kernel image is available for execution on the device
原因:版本之间不匹配
我的显卡驱动:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.103.01 Driver Version: 470.103.01 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... Off | 00000000:1A:00.0 Off | N/A |
| 30% 35C P8 15W / 220W | 497MiB / 7982MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 NVIDIA GeForce ... Off | 00000000:3D:00.0 Off | N/A |
| 30% 30C P8 18W / 220W | 8MiB / 7982MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 2 NVIDIA GeForce ... Off | 00000000:89:00.0 Off | N/A |
| 30% 30C P8 20W / 220W | 8MiB / 7982MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 3 NVIDIA GeForce ... Off | 00000000:B2:00.0 Off | N/A |
| 30% 31C P8 23W / 220W | 8MiB / 7982MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
显卡算力查看:链接
3070 算力:8.6
torch版本所需算力查看方法:
import torch
torch.cuda.get_arch_list()
torch所需算力(用前面的方法试出来的)
package pyton cuda cudnn architectures
pytorch-1.0.0 py3.7 cuda10.0.130 cudnn7.4.1_1 sm_30, sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.0.0 py3.7 cuda8.0.61 cudnn7.1.2_1 sm_20, sm_35, sm_37, sm_50, sm_52, sm_53, sm_60, sm_61
pytorch-1.0.0 py3.7 cuda9.0.176 cudnn7.4.1_1 sm_35, sm_37, sm_50, sm_52, sm_53, sm_60, sm_61, sm_70
pytorch-1.0.1 py3.7 cuda10.0.130 cudnn7.4.2_0 sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.0.1 py3.7 cuda10.0.130 cudnn7.4.2_2 sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.0.1 py3.7 cuda8.0.61 cudnn7.1.2_0 sm_35, sm_37, sm_50, sm_52, sm_53, sm_60, sm_61
pytorch-1.0.1 py3.7 cuda8.0.61 cudnn7.1.2_2 sm_35, sm_37, sm_50, sm_52, sm_53, sm_60, sm_61
pytorch-1.0.1 py3.7 cuda9.0.176 cudnn7.4.2_0 sm_35, sm_50, sm_60, sm_61, sm_70
pytorch-1.0.1 py3.7 cuda9.0.176 cudnn7.4.2_2 sm_35, sm_50, sm_60, sm_70
pytorch-1.1.0 py3.7 cuda10.0.130 cudnn7.5.1_0 sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.1.0 py3.7 cuda9.0.176 cudnn7.5.1_0 sm_35, sm_50, sm_60, sm_61, sm_70
pytorch-1.2.0 py3.7 cuda9.2.148 cudnn7.6.2_0 sm_35, sm_50, sm_60, sm_61, sm_70
pytorch-1.2.0 py3.7 cuda10.0.130 cudnn7.6.2_0 sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.2.0 py3.7 cuda9.2.148 cudnn7.6.2_0 sm_35, sm_50, sm_60, sm_61, sm_70
pytorch-1.3.0 py3.7 cuda10.0.130 cudnn7.6.3_0 sm_30, sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.3.0 py3.7 cuda10.1.243 cudnn7.6.3_0 sm_30, sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.3.0 py3.7 cuda9.2.148 cudnn7.6.3_0 sm_35, sm_50, sm_60, sm_61, sm_70
pytorch-1.3.1 py3.7 cuda10.0.130 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.3.1 py3.7 cuda10.1.243 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.3.1 py3.7 cuda9.2.148 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.4.0 py3.7 cuda10.0.130 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.4.0 py3.7 cuda10.1.243 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.4.0 py3.7 cuda9.2.148 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.5.0 py3.7 cuda10.1.243 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.5.0 py3.7 cuda10.2.89 cudnn7.6.5_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.5.0 py3.7 cuda9.2.148 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.5.1 py3.7 cuda10.1.243 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.5.1 py3.7 cuda10.2.89 cudnn7.6.5_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.5.1 py3.7 cuda9.2.148 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.6.0 py3.7 cuda10.1.243 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.6.0 py3.7 cuda10.2.89 cudnn7.6.5_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.6.0 py3.7 cuda9.2.148 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.7.0 py3.7 cuda10.1.243 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.7.0 py3.7 cuda10.2.89 cudnn7.6.5_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.7.0 py3.7 cuda11.0.221 cudnn8.0.3_0 sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80
pytorch-1.7.0 py3.7 cuda9.2.148 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.7.1 py3.7 cuda10.1.243 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.7.1 py3.7 cuda10.2.89 cudnn7.6.5_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.7.1 py3.7 cuda11.0.221 cudnn8.0.5_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80
pytorch-1.7.1 py3.7 cuda9.2.148 cudnn7.6.3_0 sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.8.0 py3.7 cuda10.1 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.8.0 py3.7 cuda10.2 cudnn7.6.5_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.8.0 py3.7 cuda11.1 cudnn8.0.5_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.8.1 py3.7 cuda10.1 cudnn7.6.3_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.8.1 py3.7 cuda10.2 cudnn7.6.5_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.8.1 py3.7 cuda11.1 cudnn8.0.5_0 sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
结论:rtx 3070 需要安装cuda11以上(也许并不绝对,我猜的)
references:
- https://blog.csdn.net/weixin_42642296/article/details/115598760
- https://developer.nvidia.com/zh-cn/cuda-gpus#compute
±----------------------------------------------------------------------------+
| NVIDIA-SMI 470.103.01 Driver Version: 470.103.01 CUDA Version: 11.4 |
|-------------------------------±---------------------±---------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=++==============|
| 0 NVIDIA GeForce … Off | 00000000:1A:00.0 Off | N/A |
| 30% 35C P8 15W / 220W | 497MiB / 7982MiB | 0% Default |
| | | N/A |
±------------------------------±---------------------±---------------------+
| 1 NVIDIA GeForce … Off | 00000000:3D:00.0 Off | N/A |
| 30% 30C P8 18W / 220W | 8MiB / 7982MiB | 0% Default |
| | | N/A |
±------------------------------±---------------------±---------------------+
| 2 NVIDIA GeForce … Off | 00000000:89:00.0 Off | N/A |
| 30% 30C P8 20W / 220W | 8MiB / 7982MiB | 0% Default |
| | | N/A |
±------------------------------±---------------------±---------------------+
| 3 NVIDIA GeForce … Off | 00000000:B2:00.0 Off | N/A |
| 30% 31C P8 23W / 220W | 8MiB / 7982MiB | 0% Default |
| | | N/A |
±------------------------------±---------------------±---------------------+