磁偶极子

本文首先介绍了电偶极子在真空中静止电荷产生的电场,详细讨论了电场强度和电位的计算。接着,通过直接求解和从电位出发求解电偶极子产生的电场,展示了电偶极子在远场点的场强行为。最后,文章预告将要分析磁偶极子的相关性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 前言

磁偶极子的性质与电偶极子类似,且电偶极子的分析较为简单,故先分析电偶极子的性质,在此基础上再分析磁偶极子。

2 电偶极子

2.1 真空中静止电荷产生的电场

2.1.1 电场强度

以点电荷 q q q为坐标原点,其在无限大真空中产生的电场强度为
E = q 4 π ε 0 r 3 r = q 4 π ε 0 r 2 a r \boldsymbol{E} = \frac{q}{4 \pi \varepsilon_0 r^3} \boldsymbol{r} = \frac{q}{4 \pi \varepsilon_0 r^2} \boldsymbol{a}_r E=4πε0r3qr=4πε0r2qar
式中, ε 0 \varepsilon_0 ε0为真空中的介电常数( ε 0 = 1 0 − 9 36 π   F / m \varepsilon_0 = \frac{10^{-9}}{36\pi} \, \mathrm{F/m} ε0=36π109F/m), r \boldsymbol{r} r为从点电荷到场点的矢量, r = ∣ r ∣ r = |\boldsymbol{r}| r=r即为点电荷到场点的距离, a r \boldsymbol{a}_r ar为与 r \boldsymbol{r} r同方向的单位矢量。

若点电荷不在坐标原点,则上式应修改为
E = q 4 π ε 0 ∣ r − r ′ ∣ 3 ( r − r ′ ) = q 4 π ε 0 R 2 a R \boldsymbol{E} = \frac{q}{4 \pi \varepsilon_0 \left| \boldsymbol{r} - \boldsymbol{r}^{\prime} \right|^3} \left( \boldsymbol{r} - \boldsymbol{r}^{\prime} \right) = \frac{q}{4 \pi \varepsilon_0 R^2} \boldsymbol{a}_R E=4πε0rr3q(rr)=4πε0R2qaR
式中, r \boldsymbol{r} r为场点的位置矢量, r ′ \boldsymbol{r}^{\prime} r为点电荷的位置矢量, R = ∣ r − r ′ ∣ R = \left| \boldsymbol{r} - \boldsymbol{r}^{\prime} \right| R=rr,即为两点间的距离, a R \boldsymbol{a}_R aR为从点电荷指向场点的单位矢量。

2.1.2 电位

电场作为一个无旋矢量场,可以表示成一个标量场的梯度。定义电位 V V V,使
E = − ∇ V \boldsymbol{E} = -\nabla V E=V
电场是保守场,与力学中的位能概念相仿,可以定义电位能。电位 V V V即表示每单位电荷的电位能,即
V 2 − V 1 = − ∫ P 1 P 2 E ⋅  ⁣ d l \newcommand{\dif}{\mathop{}\!\mathrm{d}} V_2 - V_1 = -\int_{P_1}^{P_2} \boldsymbol{E} \cdot \mathop{}\!\mathrm{d} \boldsymbol{l} V2V1=P1P2Edl
以无穷远处的电位为参考零电位,可得距离点电荷 q q q距离为 R R R的点的电位为
V = V − V ∞ = − ∫ ∞ R ( q 4 π ε 0 R 2 a R ) ⋅ ( a R  ⁣ d R ) = q 4 π ε 0 R \begin{aligned} V = V - V_{\infty} &= -\int_{\infty}^{R} \left( \frac{q}{4 \pi \varepsilon_0 R^2} \boldsymbol{a}_{R} \right) \cdot \left( \boldsymbol{a}_{R} \mathop{}\!\mathrm{d} R \right) \\ &= \frac{q}{4 \pi \varepsilon_0 R} \end{aligned} V=VV=R(4πε0R2qa

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值