长旋转椭球坐标系基础

本文介绍了椭圆柱坐标系及其与直角坐标系的变换,详细阐述了共焦椭圆和双曲线的方程。接着,探讨了长旋转椭球体坐标系,包括其坐标变换公式,并与直角坐标系的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

椭圆柱坐标(Elliptic Cylindrical Coordinates)

首先介绍椭圆柱坐标系,其横截面如下:
elliptic_cylidrical
其与直角坐标的变换为:
{ x = a cosh ⁡ u cos ⁡ v y = a sinh ⁡ u sin ⁡ v z = z \begin{cases} \begin{aligned} x &= a \cosh u \cos v \\ y &= a \sinh u \sin v \\ z &= z \end{aligned} \end{cases} xyz=acoshucosv=asinhusinv=z
其中, u ∈ [ 0 , + ∞ ) u \in [ 0 , + \infty ) u[0,+) v ∈ [ 0 , 2 π ) v \in [ 0,2 \pi ) v[0,2π) z ∈ ( − ∞ , + ∞ ) z \in ( - \infty , + \infty ) z(,+),且长轴在 x x x轴上。

x O y xOy xOy平面上,共焦点的任一椭圆与任一双曲线有4个交点,且对称分布于坐标的4个象限中。通过限定双曲线的渐近线倾角(此处,渐近线应为过原点的射线,其倾角即与 x x x正半轴的夹角),取得双曲线的1/4部分,使得其与椭圆的交点只有1个,即

  • v ∈ ( 0 , π / 2 ) v \in (0, \pi/2) v(0,π/2),取双曲线在第Ⅰ象限中的部分;
  • v ∈ ( π / 2 , π ) v \in (\pi/2, \pi) v(π/2,π),取双曲线在第Ⅱ象限中的部分;
  • v ∈ ( π , 3 π / 2 ) v \in (\pi, 3\pi/2) v(π,3π/2),取双曲线在第Ⅲ象限中的部分;
  • v ∈ ( 3 π / 2 , 2 π ) v \in (3\pi/2, 2\pi) v
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值