[Machine Learning] 8 应用机器学习的建议(Advice for Applying Machine Learning)

在这里插入图片描述

8 Advice for Applying Machine Learning(应用机器学习的建议)

8.1 Introduction

获得更多的训练实例——通常是有效的,但代价较大,下面的方法也可能有效,可考虑先采用下面的几种方法。
1.尝试减少特征的数量
2.尝试获得更多的特征
3.尝试增加多项式特征
4.尝试减少正则化程度𝜆
5.尝试增加正则化程度𝜆
不应该随机选择上面的某种方法来改进算法,而是运用一些机器学习诊断法来确定上面哪些方法对算法是有效的。

接下来将介绍怎样评估机器学习算法的性能,然后再开始讨论这些方法,它们也被称为"机器学习诊断法"。“诊断法”的意思是:这是一种测试法,通过执行这种测试,能够深入了解某种算法到底是否有用。另外,这通常也能够得到改进一种算法的效果。

8.2 Evaluating a Hypothesis

在这里插入图片描述
在确定学习算法参数的时候,需要考虑的是选择参量来使训练误差最小化。另外,仅仅是因为这个假设具有很小的训练误差,并不能说明它就一定是一个好的假设函数。例如,可能发生了过拟合问题。

那么,该如何判断一个假设函数是否过拟合?对于一些简单的数据,可以对假设函数ℎ(𝑥)进行画图,然后观察图形趋势,但对于特征变量不止一个的案例,甚至有很多特征变量,想要通过画出假设函数来进行观察,就会变得很难甚至是不可能实现。因此,需要另一种方法来评估假设函数过拟合。

为了检验算法是否过拟合,将数据分成训练集和测试集,通常用 70%的数据作为训练集,用剩下 30%的数据作为测试集。很重要的一点是训练集和测试集均要含有各种类型的数据,通常需要对数据进行“洗牌”,然后再分成训练集和测试集。
测试集评估在通过训练集让模型学习得出其参数后,对测试集运用该模型,有两种方式计算误差:
1.对于线性回归模型,利用测试集数据计算代价函数𝐽
2.对于逻辑回归模型,除了可以利用测试数据集来计算代价函数外,
在这里插入图片描述
还可以对于每一个测试集实例计算误分类的比率,
在这里插入图片描述
然后对计算结果求平均。

8.3 Model Selection and Train_Validation_Test Sets

在这里插入图片描述
假设要在 10 个不同次数的二项式模型之间进行选择,显然越高次数的多项式模型越能够适应训练数据集,但是适应训练数据集并不代表着能推广至一般情况,应该选择一个更能适应一般情况的模型。此时需要使用交叉验证集来帮助选择模型。

即:使用 60%的数据作为训练集,使用 20%的数据作为交叉验证集,使用 20%的数据作为测试集。
在这里插入图片描述
模型选择的方法为:

  1. 使用训练集训练出 10 个模型
  2. 用 10 个模型分别对交叉验证集计算得出交叉验证误差(代价函数的值)
  3. 选取代价函数值最小的模型
  4. 用步骤 3 中选出的模型对测试集计算得出推广误差(代价函数的值)

在这里插入图片描述

8.4 Diagnosing Bias vs. Variance

当运行一个学习算法时,如果这个算法的表现不理想,那么多半是出现两种情况:要么是偏差比较大,要么是方差比较大。换句话说,出现的情况要么是欠拟合,要么是过拟合问题。那么这两种情况,哪个和偏差有关,哪个和方差有关,或者是不是和两个都有关?
在这里插入图片描述

通常会通过将训练集和交叉验证集的代价函数误差与多项式的次数绘制在同一张图表上来帮助分析:
在这里插入图片描述
在这里插入图片描述
对于训练集,当 多项式次数 𝑑 较小时,模型拟合程度更低,误差较大;随着 𝑑 的增长,拟合程度提高,误差减小。
对于交叉验证集,当 𝑑 较小时,模型拟合程度低,误差较大;但是随着 𝑑 的增长,误差呈现先减小后增大的趋势,转折点是模型开始过拟合训练数据集的时候

如果交叉验证集误差较大,如何判断是方差还是偏差呢?根据上面的图表,得出:
在这里插入图片描述

  • 训练集误差和交叉验证集误差近似,但训练误差大时:偏差/欠拟合
  • 交叉验证集误差远大于训练集误差,且训练误差小时:方差/过拟合

在这里插入图片描述

8.5 Regularization and Bias/Variance

在训练模型的过程中,一般会使用一些正则化方法来防止过拟合。但是正则化的程度可能会太高或太小了,即在选择 λ 的值时也需要思考与刚才选择多项式模型次数类似的问题。
在这里插入图片描述
注: 正则项的求和符号Σ上界应为n。

选择一系列的想要测试的 𝜆 值,通常是 0-10 之间的呈现 2 倍关系的值(如:0,0.01,0.02,0.04,0.08,0.15,0.32,0.64,1.28,2.56,5.12,10共 12 个)。同样把数据分为训练集、交叉验证集和测试集。
在这里插入图片描述
选择𝜆的方法为:
1.使用训练集训练出 12 个不同程度正则化的模型
2.用 12 个模型分别对交叉验证集计算的出交叉验证误差
3.选择得出交叉验证误差最小的模型
4.运用步骤 3 中选出模型对测试集计算得出推广误差,也可以同时将训练集和交叉验证集模型的代价函数误差与 λ 的值绘制在一张图表上:
在这里插入图片描述

  • 当 𝜆 较小时,训练集误差较小(过拟合)而交叉验证集误差较大
  • 随着 𝜆 的增加,训练集误差不断增加(欠拟合),而交叉验证集误差则是先减小后增加

8.6 Learning Curves

学习曲线可用于判断某一个机器学习算法是否处于偏差、方差问题。学习曲线是机器学习算法的一个很好的。学习曲线是将训练集误差和交叉验证集误差作为训练集实例数量(𝑚)的函数绘制的图表。

即,如果有 100 行数据,从 1 行数据开始,逐渐学习更多行的数据。思想是:当训练较少行数据的时候,训练的模型将能够非常完美地适应较少的训练数据,但是训练出来的模型却不能很好地适应交叉验证集数据或测试集数据。
在这里插入图片描述
如何利用学习曲线识别高偏差/欠拟合:作为例子,尝试用一条直线来适应下面的数据,可以看出,无论训练集有多么大误差都不会有太大改观:
在这里插入图片描述
也就是说在高偏差/欠拟合的情况下,增加数据到训练集不一定能有帮助。

如何利用学习曲线识别高方差/过拟合:假设使用一个非常高次的多项式模型,并且正则化非常小,可以看出,当交叉验证集误差远大于训练集误差时,往训练集增加更多数据可以提高模型的效果。
在这里插入图片描述
也就是说在高方差/过拟合的情况下,通过增加更多数据到训练集可能可以提高算法效果。

8.7 Summary

  1. 获得更多的训练实例——解决高方差
  2. 尝试减少特征的数量——解决高方差
  3. 尝试获得更多的特征——解决高偏差
  4. 尝试增加多项式特征——解决高偏差
  5. 尝试减少正则化程度 λ——解决高偏差
  6. 尝试增加正则化程度 λ——解决高方差

神经网络的方差和偏差:
在这里插入图片描述
使用较小的神经网络,类似于参数较少的情况,容易导致高偏差和欠拟合,但计算代价较小使用较大的神经网络,类似于参数较多的情况,容易导致高方差和过拟合,虽然计算代价比较大,但是可以通过正则化手段来调整而更加适应数据。通常选择较大的神经网络并采用正则化处理会比采用较小的神经网络效果要好

对于神经网络中的隐藏层的层数的选择,通常从一层开始逐渐增加层数,为了更好地作选择,可以把数据分为训练集、交叉验证集和测试集,针对不同隐藏层层数的神经网络训练神经网络, 然后选择交叉验证集代价最小的神经网络。

上一篇:7 神经网络的学习(Neural Networks: Learning)
下一篇:9 机器学习系统的设计(Machine Learning System Design)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值