数模算法1:层次分析法
- 适用问题:评价类问题,决策(方案选择类)
** input**:判断矩阵(A)
AHP处理
output:权重(得分)向量
1.整体导图
2.算法步骤及代码
2.1算术平均法
算法步骤
- 将判断矩阵按照列归一化(每一个元素/列和)
- 将归一化后得各列相加(按行求和)
- 将相加后向量中的每个元素元素除以n
matlab代码
%% 方法1:算术平均法求权重
% 1.归一化
Sum_A = sum(A)%对A中元素按列求和
[n,n] = size(A) %获取矩阵的大小,方阵所以适用一个n即可
SUM_A = repmat(Sum_A,n,1) %将Sum_A复制n次每次沿着列的方向进行,
Stand_A = A ./ SUM_A
% 这里我们直接将两个矩阵对应的元素相除即可
% 2.将归一化的各列相加(按行求和)
sum(Stand_A,2);
% 3.将相加后得到的向量中每个元素除以n即可得到权重向量
disp('算术平均法求权重的结果为:');
disp(sum(Stand_A,2) / n)%每列数据都会求得一个权重,n列求平均
2.2几何平均法
算法步骤
1.A的元素各行相乘得到一个新的列向量
2. 将向量每个分量开n次方
3. 对列向量进行归一化即可得到权重向量
matlab代码
%第一步:各行相乘
Prduct_A = prod(A,2)
% prod函数和sum函数类似,一个用于乘,一个用于加 dim = 2 维度是行
% 第二步:将新的向量的每个分量开n次方
Prduct_n_A = Prduct_A .^ (1/n)
% 这里对每个元素进行乘方操作,因此要加.号哦。 ^符号表示乘方哦 这里是开n次方,所以我们等价求1/n次方
% 第三步:对该列向量进行归一化即可得到权重向量
% 将这个列向量中的每一个元素除以这一个向量的和即可
disp('几何平均法求权重的结果为:');
disp(Prduct_n_A ./ sum(Prduct_n_A))
2.3特征值法求权重向量
算法步骤
- 求出矩阵A的最大特征值及对应特征向量
- 对特征向量进行归一化,既可以得到我们的权重
[V,D] = eig(A) %V是特征向量, D是由特征值构成的对角矩阵(除了对角线元素外,其余位置元素全为0)
Max_eig = max(max(D)) %也可以写成max(D(:))哦~
% 那么怎么找到最大特征值所在的位置了? 需要用到find函数,它可以用来返回向量或者矩阵中不为0的元素的位置索引。
% 那么问题来了,我们要得到最大特征值的位置,就需要将包含所有特征值的这个对角矩阵D中,不等于最大特征值的位置全变为0
% 这时候可以用到矩阵与常数的大小判断运算
D == Max_eig
[r,c] = find(D == Max_eig , 1)
% 找到D中第一个与最大特征值相等的元素的位置,记录它的行和列。
% 第二步:对求出的特征向量进行归一化即可得到我们的权重
V(:,c)
disp('特征值法求权重的结果为:');
disp( V(:,c) ./ sum(V(:,c)) )