首先介绍深度学习发展历程以及各个阶段的主要问题和解决办法。
第一代神经网络(1958-1969)
最早于1943年,心理学家麦卡洛克和数学逻辑学家皮兹发表论文《神经活动中内在逻辑的演算》,提出MCP人工神经元模型。
于1958年,美国科学家罗森布拉特(Rosenblatt)提出感知器算法,该方法能够使用梯度下降法进行自动更新参数,于1962年,证明该方法可以收敛。
于1969年,美国数学家Minsky提出感知器只能处理线性分类问题,从而陷入低谷。
第二代神经网络(1986-1998)
于1986年,深度学习之父杰弗里*辛顿(Hinton)提出了BP算法,并进行Sigmoid非线性激活,有效解决非线性问题。
于1989年,LeCun发明卷积神经网络-LeNet。此时由于机器学习的快速发展,包括:1986年,决策树方法出现;1995年,Vapnik提出SVM;1997年,AdaBoost的提出;2000年,Kernel SVM的提出;2001年,随机森林,导致深度学习陷入冰点。
于1991年,有人提出BP算法,存在梯度消失问题。
于1997年,LSTM模型出现。
第三代神经网络
快速发展阶段(2006-2012)
于2006年,杰弗里*辛顿和他的学生,提出了梯度消失的解决方案:无监督预训练对权值进行初始化+有监督的反向传播算法进行微调。
于2011年,ReLU激活函数提出,可以有效抑制梯度消失问题。爆发期(2012-至今)
于2012年,杰弗里*辛顿与学生参加ImageNet图像识别比赛,通过构建CNN网络AlexNet夺冠,创新点:
l 首次采用ReLU激活函数
l 采用GPU加速
于2015年,Hinton,LeCun,Bengio论证了局部极值问题对深度学习的影响。
于2015年,何凯明提出Deep
Residual Net,使得深度学习成了名副其实的“深度”学习。
现阶段比较流行的网络,有深度神经网络(DNN),卷积神经网络(CNN),循环递归神经网络(RNN),生成对抗网络(GAN)等。
l 前馈神经网络=全链接神经网络
l 残差网络含有跳层连接(图片信息不全)
l 卷积神经网络含有卷积层,ReLU层和池化层,最后为全连接层
l 现在的生成性对抗网络(GANs:generative adversarial networks)就没有使用池化层
至2018年深度学习框架,如下: