深度学习理解

首先介绍深度学习发展历程以及各个阶段的主要问题和解决办法。

第一代神经网络(1958-1969)

最早于1943年,心理学家麦卡洛克和数学逻辑学家皮兹发表论文《神经活动中内在逻辑的演算》,提出MCP人工神经元模型。

于1958年,美国科学家罗森布拉特(Rosenblatt)提出感知器算法,该方法能够使用梯度下降法进行自动更新参数,于1962年,证明该方法可以收敛。

于1969年,美国数学家Minsky提出感知器只能处理线性分类问题,从而陷入低谷。

第二代神经网络(1986-1998)

于1986年,深度学习之父杰弗里*辛顿(Hinton)提出了BP算法,并进行Sigmoid非线性激活,有效解决非线性问题。

于1989年,LeCun发明卷积神经网络-LeNet。此时由于机器学习的快速发展,包括:1986年,决策树方法出现;1995年,Vapnik提出SVM;1997年,AdaBoost的提出;2000年,Kernel SVM的提出;2001年,随机森林,导致深度学习陷入冰点。

于1991年,有人提出BP算法,存在梯度消失问题。

于1997年,LSTM模型出现。

第三代神经网络

快速发展阶段(2006-2012)

于2006年,杰弗里*辛顿和他的学生,提出了梯度消失的解决方案:无监督预训练对权值进行初始化+有监督的反向传播算法进行微调。

于2011年,ReLU激活函数提出,可以有效抑制梯度消失问题。爆发期(2012-至今)

于2012年,杰弗里*辛顿与学生参加ImageNet图像识别比赛,通过构建CNN网络AlexNet夺冠,创新点:

l 首次采用ReLU激活函数

l 采用GPU加速

于2015年,Hinton,LeCun,Bengio论证了局部极值问题对深度学习的影响。

于2015年,何凯明提出Deep
Residual Net,使得深度学习成了名副其实的“深度”学习。

现阶段比较流行的网络,有深度神经网络(DNN),卷积神经网络(CNN),循环递归神经网络(RNN),生成对抗网络(GAN)等。

在这里插入图片描述

l 前馈神经网络=全链接神经网络

l 残差网络含有跳层连接(图片信息不全)

l 卷积神经网络含有卷积层,ReLU层和池化层,最后为全连接层

l 现在的生成性对抗网络(GANs:generative adversarial networks)就没有使用池化层

至2018年深度学习框架,如下:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值