【计量经济学导论】14. 定性响应回归模型

本文介绍了定性响应回归模型,重点讨论了线性概率模型的设定、缺点及其解决方案,包括Probit和Logit模型。线性概率模型因预测值可能超出[0,1]区间和异方差问题而受限。Probit和Logit模型作为替代,避免了这些问题,其中Logit模型因其简洁性和解释性在实际应用中更为常见。极大似然估计用于参数估计,似然比检验和拟合优度检验则用于模型评估。" 116699202,11012467,Arthas诊断工具实战:CPU性能问题定位,"['Java', '诊断工具', '性能优化']
摘要由CSDN通过智能技术生成

定性响应回归模型

线性概率模型

线性概率模型的模型设定

当我们在用多元线性回归模型去解释一个二值结果时,该模型就成为线性概率模型。为什么是线性概率,我们在后面的分析中便可以看到。

对于线性概率模型,其模型设定为:
Y = β 0 + β 1 X 1 + ⋯ + β k X k + u   , Y=\beta_0+\beta_1X_1+\cdots+\beta_kX_k+u \ , Y=β0+β1X1++βkXk+u ,

其中因变量 Y Y Y 是一个定性响应变量:
Y = { 0 1   . Y= \left\{ \begin{array}{l} 0\\ 1 \end{array} \right. \ . Y={ 01 .

进行参数估计的时候,我们仍然采取OLS的思想,直接进行回归。我们也可以将模型写成数学期望的模式,这一点对于我们的分析很重要:
E ( Y ∣ X ) = β 0 + β 1 X 1 + β 2 X 2 + ⋯ + β k X k = X β   . {\rm E}(Y|X)=\beta_0+\beta_1X_1+\beta_2X_2+\cdots+\beta_kX_k=\boldsymbol{X\beta} \ . E(YX)=β0+β1X1+β2X2++βkXk=Xβ .
为了分析方便,下面简单考虑一元线性概率模型:
Y = β 0 + β 1 X 1 + u   , Y=\beta_0+\beta_1X_1+u \ , Y=β0+β1X1+u ,
由于 Y Y Y 具有二元离散分布,我们可以得到 E ( Y ∣ X 1 ) {\rm E}(Y|X_1) E(YX1) 的含义是:
E ( Y ∣ X 1 ) = 1 × P ( Y = 1 ∣ X 1 ) + 0 × P ( Y = 0 ∣ X 1 ) = P ( Y = 1 ∣ X 1 )   . {\rm E}(Y|X_1)=1\times P(Y=1|X_1)+0\times P(Y=0|X_1)=P(Y=1|X_1) \ . E(YX1)=1×P(Y=1X1)+0×P(Y=0X1)=P(Y=1X1) .

P ( Y = 1 ∣ X 1 ) = β 0 + β 1 X 1   . P(Y=1|X_1)=\beta_0+\beta_1X_1 \ . P(Y=1X1)=β0+β1X1 .

我们称 P ( Y = 1 ∣ X ) P(Y=1|X) P(Y=1X) 为响应概率(response probability)。因为这个响应概率是参数 β \beta β 的线性函数,因此这种带有二值因变量的多元线性回归模型被称为线性概率模型。

此外,我们可以通过求导得到 LPM 的边际效应:
∂ P ( Y = 1 ∣ X 1 ) ∂ X 1 = β 1   . \frac{\partial P(Y=1|X_1)}{\partial X_1}=\beta_1 \ . X1P(Y=1X1)=β1 .

其含义为:在保持其他因素不变的情况下, β 1 \beta_1 β1 度量了因 X 1 X_1 X1 的变化导致的成功概率的变化。

线性概率模型的缺点

(1) 取值界限问题

在 OLS 估计下,响应概率的预测值表达式为:
P ( Y i = 1 ^ ∣ X i ) = β ^ 0 + β ^ 1 X i   , P(\widehat{Y_i=1}|X_i)=\hat\beta_0+\hat\beta_1X_i \ , P(Yi=1 Xi)=β^0+β^1Xi ,

随着 X i X_i Xi 的变化,响应概率的预测值有可能超出 [ 0 ,   1 ] \left[0,\ 1\right] [0, 1] ,即无法保证 0 ≤ P ( Y = 1 ∣ X ) ≤ 1 0\leq P(Y=1|X)\leq1 0P(Y=1X)1

(2) 异方差问题

定义响应概率为 p ( X ) ≜ E ( Y ∣ X ) = P ( Y = 1 ∣ X ) p(X) \triangleq {\rm E}(Y|X)=P(Y=1|X) p(X)E(YX)=P(Y=1X) ,可以看出响应概率是解释变量 X X X 的函数。接下来我们求随机干扰项的条件方差:

先求 Y Y Y 的二阶矩:
E ( Y 2 ∣ X ) = 1 × P ( Y 2 = 1 ∣ X ) + 0 × P ( Y 2 = 0 ∣ X ) = P ( Y = 1 ∣ X ) = E ( Y ∣ X )   , {\rm E}(Y^2|X)=1\times P(Y^2=1|X)+0\times P(Y^2=0|X)=P(Y=1|X)={\rm E}(Y|X) \ , E(Y2X)=1×P(Y2=1X)+0×P(Y2=0X)=P(Y=1X)=E(YX) ,

进而求 u u u 的条件方差:
V a r ( u ∣ X ) = V a r ( Y ∣ X ) = E ( Y 2 ∣ X ) − [ E ( Y ∣ X ) ] 2 = E ( Y ∣ X ) − [ E ( Y ∣ X ) ] 2   , {\rm Var}(u|X)={\rm Var}(Y|X)={\rm E}(Y^2|X)-[{\rm E}(Y|X)]^2={\rm E}(Y|X)-[{\rm E}(Y|X)]^2 \ , Var(uX)=Var(YX)=E(Y2X)[E(YX

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值