【数理统计】03. 数理统计中的三大分布

本文深入探讨了数理统计中的三大分布——Γ 分布、χ2 分布和 t 分布。Γ 分布介绍了 Γ 函数、分布定义及其性质;χ2 分布涉及构造型定义、概率密度函数及非中心 χ2 分布;t 分布包括构造型定义、性质以及非中心 t 分布。此外,还提及了 F 分布和常用分布的分位数概念。
摘要由CSDN通过智能技术生成

Chapter 3:数理统计中的三大分布

一、 Γ \Gamma Γ 分布

Part 1: Γ \Gamma Γ 函数

在介绍 Γ \Gamma Γ 分布之前,我们先回顾一下在数学分析中学过的 Γ \Gamma Γ 函数。在实数域上 Γ \Gamma Γ 函数定义为
Γ ( x ) = ∫ 0 ∞ t x − 1 e − t d t   , x > 0   . \Gamma(x)=\int_0^\infty t^{x-1}e^{-t}{\rm d}t \ , \quad x>0 \ . Γ(x)=0tx1etdt ,x>0 .
通过分部积分的方法,可以推导出 Γ \Gamma Γ 函数具有如下的递归性质:
Γ ( x + 1 ) = x Γ ( x )   . \Gamma(x+1)=x\Gamma(x) \ . Γ(x+1)=xΓ(x) .
容易证明, Γ \Gamma Γ 函数可以作为阶乘在实数集上的延拓,即当 x x x 的取值为正整数 n n n 时:
Γ ( n ) = ( n − 1 ) !   . \Gamma(n)=(n-1)! \ . Γ(n)=(n1)! .
通过计算验证:
Γ ( 1 ) = 1   , Γ ( 1 2 ) = π 2   . \Gamma(1)=1 \ , \quad \Gamma\left(\frac12\right)=\frac\pi2 \ . Γ(1)=1 ,Γ(21)=2π .
我们还可以讨论 Γ \Gamma Γ 函数的凹凸性:对于 x > 0 x>0 x>0 Γ \Gamma Γ 函数是严格凸函数。

作为阶乘的推广, Γ \Gamma Γ 函数也有和 Stirling 公式类似的一个结论,即当 x x x 趋近于无穷时,我们 有
Γ ( x ) ∼ 2 π e − x x x − 1 2   . \Gamma(x)\sim\sqrt{2\pi}e^{-x}x^{x-\frac12}\ . Γ(x)2π exxx21 .
所以当 x x x 足够大时,可以用 Stirling 公式来近似计算 Γ \Gamma Γ 函数值。

Part 2: Γ \Gamma Γ 分布的定义

再介绍一下 Γ \Gamma Γ 分布,由于在以往的概率论学习中接触较少,并且 Γ \Gamma Γ 分布在数理统计中的确是一个相当重要的概率分布,所以在这里我们对 Γ \Gamma Γ 分布展开详细讨论。首先我们给出 Γ \Gamma Γ 分布的密度函数:
p ( x ; α , λ ) = λ α Γ ( α ) x α − 1 e − λ x   ,      x > 0   , p(x;\alpha,\lambda)=\frac{\lambda^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x} \ , \ \ \ \ x>0 \ , p(x;α,λ)=Γ(α)λαxα1eλx ,    x>0 ,
记为 Γ ( α , λ ) \Gamma(\alpha,\lambda) Γ(α,λ) ,其中 α > 0 \alpha>0 α>0 称为形状参数, λ > 0 \lambda>0 λ>0 称为尺度参数。

λ = 1 \lambda=1 λ=1 时,我们称 Γ ( α , 1 ) \Gamma(\alpha,1) Γ(α,1) 为标准 Γ \Gamma Γ 分布。我们可以写出标准 Γ \Gamma Γ 分布的密度函数和分布函数:
p ( x ; α , 1 ) = 1 Γ ( α ) x α − 1 e − x   , x > 0   , F ( x ; α , 1 ) = ∫ 0 x 1 Γ ( α ) t α − 1 e − t d t   , x > 0   . \begin{aligned} p(x;\alpha,1)&=\frac{1}{\Gamma(\alpha)}x^{\alpha-1}e^{-x} \ , \quad x>0 \ , \\ \\ F(x;\alpha,1)&=\int_0^x\frac{1}{\Gamma(\alpha)}t^{\alpha-1}e^{-t}{\rm d}t \ , \quad x>0 \ . \end{aligned} p(x;α,1)F(x;α,1)=Γ(α)1xα1ex ,x>0 ,=0xΓ(α)1tα1etdt ,x>0 .
下面我们证明一个有趣的 Γ \Gamma Γ 分布的性质:若 ξ ∼ Γ ( α , λ ) \xi\sim\Gamma(\alpha,\lambda) ξΓ(α,λ) ,则 λ ξ ∼ Γ ( α , 1 ) \lambda\xi\sim\Gamma(\alpha,1) λξΓ(α,1)

首先注意到,对一般的 Γ \Gamma Γ 分布,其分布函数可以写为
F ( x ; α , λ ) = ∫ 0 x λ α Γ ( α ) y α − 1 e − λ y d y = ∫ 0 x 1 Γ ( α ) ( λ y ) α − 1 e − λ y d ( λ y ) = t = λ y ∫ 0 λ x 1 Γ ( α ) t α − 1 e − t d t   . \begin{aligned} F(x;\alpha,\lambda)&=\int_0^x\frac{\lambda^\alpha} {\Gamma(\alpha)}y^{\alpha-1}e^{-\lambda y}{\rm d}y =\int_0^x\frac{1} {\Gamma(\alpha)}(\lambda y)^{\alpha-1}e^{-\lambda y}{\rm d}(\lambda y) \xlongequal{t=\lambda y}\int_0^{\lambda x} \frac{1} {\Gamma(\alpha)}t^{\alpha-1}e^{-t}{\rm d}t \end{aligned} \ . F(x;α,λ)=0xΓ(α)λαyα1eλydy=0xΓ(α)1(λy)α1eλyd(λy)t=λy 0λxΓ(α)1tα1etdt .
所以,计算 λ ξ \lambda\xi λξ 的分布函数为
P ( λ ξ < x ) = P ( ξ < x λ ) = ∫ 0 λ ⋅ x λ 1 Γ ( α ) t α − 1 e − t d t = ∫ 0 x 1 Γ ( α ) t α − 1 e − t d t   . P(\lambda\xi<x)=P\left(\xi<\frac{x}{\lambda}\right)=\int_0^{\lambda\cdot\frac{x}{\lambda}} \frac{1} {\Gamma(\alpha)}t^{\alpha-1}e^{-t}{\rm d}t=\int_0^{x} \frac{1} {\Gamma(\alpha)}t^{\alpha-1}e^{-t}{\rm d}t \ . P(λξ<x)=P(ξ<λx)=0λλxΓ(α)1tα1etdt=0xΓ(α)1tα1etdt .
由此可知, λ ξ \lambda\xi λξ 的分布函数正是标准 Γ \Gamma Γ 分布的分布函数,所以 λ ξ ∼ Γ ( α , 1 ) \lambda\xi\sim\Gamma(\alpha,1) λξΓ(α,1)

特别地,

  1. α = 1 \alpha=1 α=1 时, Γ ( 1 , λ ) \Gamma(1,\lambda) Γ(1,λ) 即为参数为 λ \lambda λ 的指数分布 E ( λ ) E(\lambda) E(λ)

  2. α = n 2 ,   λ = 1 2 \alpha=\dfrac{n}{2},\,\lambda=\dfrac12 α=2n,λ=21 时, Γ ( n 2 , 1 2 ) \Gamma\left(\dfrac n2,\dfrac12\right) Γ(2n,21) 即为自由度为 n n n χ 2 \chi^2 χ2 分布 χ 2 ( n ) \chi^2(n) χ2(n)

  3. α = n \alpha=n α=n 为整数时, Γ ( n , λ ) \Gamma(n,\lambda) Γ(n,λ) 被称为 Erlang 分布。

Part 3: Γ \Gamma Γ 分布的性质

Γ \Gamma Γ 分布的 k k k 阶矩:
E ( X k ) = ∫ 0 ∞ λ α x k + α − 1 Γ ( α ) e − λ x d x = Γ ( k + α ) λ k Γ ( α ) ∫ o ∞ λ k + α x k + α − 1 Γ ( k + α ) e − λ x d x = Γ ( k + α ) λ k Γ ( α ) = ( α + k − 1 ) ( α + k − 2 ) ⋯ α Γ ( α ) λ k Γ ( α ) = ( α + k − 1 ) ( α + k − 2 ) ⋯ α λ k   . \begin{aligned} {\rm E}\left(X^k\right)&=\int_0^\infty\frac{\lambda^\alpha x^{k+\alpha-1}}{\Gamma(\alpha)}e^{-\lambda x}{\rm d}x \\ &=\frac{\Gamma(k+\alpha)}{\lambda^k\Gamma(\alpha)}\int_o^\infty\frac{\lambda^{k+\alpha}x^{k+\alpha-1}}{\Gamma(k+\alpha)}e^{-\lambda x}{\rm d}x \\ &=\frac{\Gamma(k+\alpha)}{\lambda^k\Gamma(\alpha)} \\ &=\frac{(\alpha+k-1)(\alpha+k-2)\cdots\alpha\Gamma(\alpha)}{\lambda^k\Gamma(\alpha)} \\ &=\frac{(\alpha+k-1)(\alpha+k-2)\cdots\alpha}{\lambda^k} \ . \end{aligned} E(Xk)=0Γ(α)λαxk+α1eλxdx=λkΓ(α)Γ(k+α)oΓ(k+α)λk+αxk+α1eλxdx=λkΓ(α)Γ(k+α)=λkΓ(α)(α+k1)(α+k2)αΓ(α)=λk(α+k1)(α+k2)α .
Γ \Gamma Γ 分布的期望和方差:
E ( X ) = α λ   , E ( X 2 ) = α ( α + 1 ) λ 2   , V a r ( X ) = α λ 2   . {\rm E}\left(X\right)=\frac{\alpha}{\lambda} \ , \quad {\rm E}\left(X^2\right)=\frac{\alpha(\alpha+1)}{\lambda^2} \ , \quad {\rm Var}(X)=\frac{\alpha}{\lambda^2} \ . E(X)=λα ,E(X2)=λ2α(α+

  • 6
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值