学术速运|利用深度学习和分子动力学模拟设计抗菌肽

研究结合深度学习模型,如序列生成对抗网络和Transformer,设计抗菌肽(AMPs),通过AlphaFold2预测结构和分子动力学模拟进行筛选。新发现的肽A-222展示出对多种细菌的抑制效果,证实了深度学习在加速新型AMP发现中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目: Designing antimicrobial peptides using deep learning and molecular dynamic simulations

文献来源:Briefings in Bioinformatics, 2023, 1–13

代码:https://github.com/gc-js/Antimicrobial-peptide-generation

简介:随着多药耐药细菌的出现,抗菌肽(AMPs)为取代传统抗生素治疗细菌感染提供了很有前途的选择,但使用传统方法发现和设计amp是一个耗时且昂贵的过程。深度学习已应用于AMP的从头设计,并高效地解决AMP分类。在本研究中,作者结合了几种自然语言处理模型来设计和识别AMP,即序列生成对抗网络、来自变压器的双向编码器表示和多层感知器。然后,通过AlphaFold2的结构预测和分子动力学模拟,筛选出6个候选AMP。这些肽与已知的AMP具有同源性较低,属于一类新的AMP。经过初步的生物活性测试后,其中一个多肽A-222对革兰氏阳性菌和革兰氏阴性菌均有抑制作用。通过核磁共振获得的该新肽A-222的结构分析证实了阿尔法螺旋的存在,这与AlphaFold2预测的结果一致。然后,作者进行了结构-活性关系研究,设计了一系列新的肽类似物,发现这些类似物对嗜麦芽窄食单胞菌WH 006和铜绿假单胞菌PAO1的活性可提高4-8倍。总的来说,深度学习在加速发现新型AMP方面显示出了巨大的潜力,并有望成为开发新型AMP的重要工具。

主要内容:

-------------------------------------------

欢迎点赞收藏转发!

下次见!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值