题目: Improving drug-target affinity prediction via feature fusion and knowledge distillation
文献来源:Briefings in Bioinformatics, 2023, 1–11
代码:
简介:快速准确地预测药物靶标亲和力可以加快和改进药物发现过程。最近的研究表明,深度学习模型可能具有提供快速和准确的药物-靶标亲和力预测的潜力。然而,现有的深度学习模型仍然有其自身的缺点,使得它难以令人满意地完成任务。基于复杂的模型严重依赖于耗时的对接过程,而无复杂的模型缺乏可解释性。在本研究中,作者引入了一种新的知识蒸馏洞察药物-靶点亲和预测模型与特征融合输入,以做出快速、准确和可解释的预测。作者在公共亲和力预测和虚拟筛选数据集上对该模型进行了基准测试。结果表明,它优于以前的最先进的模型,并取得了与以前的基于复杂的模型相当的性能。最后,作者通过可视化研究了该模型的可解释性,发现它可以为成对交互提供有意义的解释。作者认为该模型可以进一步提高药物靶点亲和预测,具有更高的准确性和可靠的可解释性
主要内容:
-------------------------------------------
欢迎点赞收藏转发!
下次见!