算法系列——动态规划3

这篇博客介绍了如何使用动态规划方法解决两个计算机科学问题:整数拆分,寻找将整数拆分成正整数相乘得到最大乘积的方式;以及不同二叉搜索树的数量计算,探讨了不同节点数的二叉搜索树的组合计数。通过双重循环迭代更新动态规划数组,得出最优解。
摘要由CSDN通过智能技术生成

343. 整数拆分

class Solution {

public:

/*

    dp[i]:将i拆分后的正整数相乘得到的最大值    

    初始化应该是初始化dp[2]=1;因为初始化dp[0],dp[1]没有意义

    index   0   1   2   3   4   5   6   7   8   9   10

    dp      #   #   1   2   4   6   9   12  18  27  36

    dp[i]只能来自于

    1.j*(i-j)或者

    2.dp[j]*(i-j)或者

    3.j*dp[i-j]或者

    4.dp[j]*dp[i-j]

    将2,3归为一种遍历情况,有数学公式证明拆分成4个以上的数相乘一定是最小的,可以不用比较,

    通过每种情况推导出dp[i],然后取最大的一种情况,所以推导公式:

    dp[i]=max(dp[i],max(dp[j]*(i-j),j*(i-j)));

*/

    int integerBreak(int n) {

        vector<int>dp(n+1);

        dp[2]=1;

        for(int i=3;i<=n;i++){

            for(int j=1;j<=i-2;j++){//注意这里的退出条件因为dp[0],dp[1]是没有意义的,默认为0,所以写j<=i-2就行,写成j<=i-1也行,因为他要求的是最大值,遍历到dp[1]也无所谓

                dp[i]=max(dp[i],max(dp[j]*(i-j),j*(i-j)));

            }

        }

        return dp[n];

    }

};

96. 不同的二叉搜索树

class Solution {

public:

/*

    假设n个节点的不同二叉树搜索树有G(n)个,令f(i):i为节点的二叉树的个数;

    G(n)=f(1)+f(2)+f(3)+...+f(n);

    f(i)=G(i-1)*G(n-i);

    所以整理得:

    G(n)=G(0)*G(n-1)+G(1)*G(n-2)+G(2)*G(n-3)+...G(n-2)*G(1)+G(n-1)*G(0);

    

    dp[i]:与G(n)的定义相同;

    for(int i=1;i<=n;i++){

        for(int j=0;j<=i-1;j++){

            dp[i]=dp[i]+dp[j]*dp[i-j-1];

        }

    }

*/

    int numTrees(int n) {

        vector<int>dp(n+1);

        dp[0]=1;

        for(int i=1;i<=n;i++){

            for(int j=0;j<=i-1;j++){//左子树的个数从0~i-1,右子树的个数从i-1~0

                dp[i]=dp[i]+dp[j]*dp[i-j-1];

            }

        }

        return dp[n];

    }

};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值