数据分析:基于SAS的电信用户流失预警
目录
一、项目要求
1.1 项目背景
根据调查资料,在商业社会中5%的客户留存率增长意味着公司利润30%的增长,而把产品卖给老客户的概率是卖给新客户的3倍,获得一个新客户的成本是保持一个老客户的5倍,故留住老用户对于一个企业而言十分重要。
现阶段,企业常通过用户生命周期管理(CLM),在不同周期阶段,制定不同的用户管理策略,以实现用户生命周期价值(CLV)最大化。
针对用户衰退阶段,构建高危流失用户的预警机制,制定面向高危用户的挽留策略,是延长用户生命周期、提升用户留存的重要举措。
1.2 项目意义
本分析基于电信客户的流失相关信息,利用SAS统计分析软件,对数据进行分析,了解数据的各维度统计量与分布特点,分析与用户流失相关的的关键特征,建立逻辑回归模型,并得到了各特征的参数,能够以此预测各用户流失概率,判断用户是否为高危流失用户,为后期针对这些用户实行特定的的挽留举措提供数据支持。
二、数据处理、特征筛选
2.1 读取数据,观察数据特点
proc import
datafile='F:\用户流失预警\churn.csv'
out=churn replace
dbms=csv replace;
getnames=yes;
run;
显示数据共有21个变量,3333个观测,其中Churn_ 为变量用户是否流失,为字符变量
#NOTE: 成功创建“WORK.CHURN”数据集。
#NOTE: 数据集 WORK.CHURN 有 3333 个观测和 21 个变量。
#96 State $
#97 Account_Length
#98 Area_Code
#99 Phone $
#100 Int_l_Plan $
#101 VMail_Plan $
#102 VMail_Message
#103 Day_Mins
#104 Day_Calls
#105