基于SAS的电信用户流失预警

本文通过SAS分析电信用户流失数据,发现国际计划、邮箱计划、各项通话费用与用户流失显著相关,建立的逻辑回归模型揭示国际收费和客服电话数是影响用户流失的主要因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据分析:基于SAS的电信用户流失预警

目录
在这里插入图片描述

一、项目要求

1.1 项目背景
根据调查资料,在商业社会中5%的客户留存率增长意味着公司利润30%的增长,而把产品卖给老客户的概率是卖给新客户的3倍,获得一个新客户的成本是保持一个老客户的5倍,故留住老用户对于一个企业而言十分重要。

现阶段,企业常通过用户生命周期管理(CLM),在不同周期阶段,制定不同的用户管理策略,以实现用户生命周期价值(CLV)最大化。

针对用户衰退阶段,构建高危流失用户的预警机制,制定面向高危用户的挽留策略,是延长用户生命周期、提升用户留存的重要举措。

1.2 项目意义
本分析基于电信客户的流失相关信息,利用SAS统计分析软件,对数据进行分析,了解数据的各维度统计量与分布特点,分析与用户流失相关的的关键特征,建立逻辑回归模型,并得到了各特征的参数,能够以此预测各用户流失概率,判断用户是否为高危流失用户,为后期针对这些用户实行特定的的挽留举措提供数据支持。

二、数据处理、特征筛选

2.1 读取数据,观察数据特点

proc import 
datafile='F:\用户流失预警\churn.csv'
out=churn replace
dbms=csv replace;
getnames=yes;
run;

显示数据共有21个变量,3333个观测,其中Churn_ 为变量用户是否流失,为字符变量

#NOTE: 成功创建“WORK.CHURN”数据集。
#NOTE: 数据集 WORK.CHURN 有 3333 个观测和 21 个变量。
#96                   State $
#97                   Account_Length
#98                   Area_Code
#99                   Phone $
#100                  Int_l_Plan $
#101                  VMail_Plan $
#102                  VMail_Message
#103                  Day_Mins
#104                  Day_Calls
#105  
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值