在使用MMsegmentation框架时候,文中自带的配置文件中会利用训练图像的均值和标准差来对数据提前进行一个预处理操作。SegDataPreProcessor函数可以在/mmsegmentation-main/mmseg/models/data_preprocessor.py中进行定义。
由于训练数据的不同,其均值和标准差也是不相同的,会对模型的训练结果产生有一定的影像。需要提前读取数据的均值和标准差,可以使用以下代码
from PIL import Image
import os
import numpy as np
from tqdm import tqdm
# 指定数据集图像目录
dataset_dir = r'路径'
# 获取所有Tiff图像文件
# image_files = [os.path.join(dataset_dir, filename) for filename in os.listdir(dataset_dir) if filename.endswith('.tiff')]
image_files = [os.path.join(dataset_dir, filename) for filename in os.listdir(dataset_dir) if filename.endswith('.jpg')]
# 初始化均值和标准差
mean = [0, 0, 0]
std = [0, 0, 0]
# 使用tqd