MMsegmentation训练图像均值和标准差

本文介绍了如何在使用MMsegmentation框架时,通过读取训练图像计算并应用自定义的均值和标准差进行预处理,以优化模型训练效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在使用MMsegmentation框架时候,文中自带的配置文件中会利用训练图像的均值和标准差来对数据提前进行一个预处理操作。SegDataPreProcessor函数可以在/mmsegmentation-main/mmseg/models/data_preprocessor.py中进行定义。

由于训练数据的不同,其均值和标准差也是不相同的,会对模型的训练结果产生有一定的影像。需要提前读取数据的均值和标准差,可以使用以下代码

from PIL import Image
import os
import numpy as np
from tqdm import tqdm

# 指定数据集图像目录
dataset_dir = r'路径'

# 获取所有Tiff图像文件
# image_files = [os.path.join(dataset_dir, filename) for filename in os.listdir(dataset_dir) if filename.endswith('.tiff')]
image_files = [os.path.join(dataset_dir, filename) for filename in os.listdir(dataset_dir) if filename.endswith('.jpg')]

# 初始化均值和标准差
mean = [0, 0, 0]
std = [0, 0, 0]

# 使用tqd
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值