目录
1. 不定积分
1.1. 基本的不定积分公式
下面我们把一众导数公式倒过来写。
1. ∫ 0 d x = C 2. ∫ 1 d x = ∫ d x = x + C 3. ∫ x a d x = 1 a + 1 x a + 1 + C ( a ≠ − 1 ) 4. ∫ x − 1 d x = ∫ 1 x d x = ln ∣ x ∣ + C 5. ∫ a x d x = a x ln a + C 6. ∫ e x d x = e x + C 7. ∫ cos x d x = sin x + C 8. ∫ sin x d x = − cos x + C 9. ∫ sec 2 x d x = tan x + C 10. ∫ csc 2 x d x = − cot x + C 11. ∫ sec x tan x d x = sec x + C 12. ∫ csc x cot x d x = − csc x + C 13. ∫ 1 1 + x 2 d x = arctan x + C = − a r c c o t x + C 1 14. ∫ 1 1 − x 2 d x = arcsin x + C = − arccos x + C 1 15. ∫ cosh x d x = ∫ e x + e − x 2 = sinh x + C 16. ∫ sinh x d x = ∫ e x + e − x 2 = cosh x + C \begin{aligned} &1.\int0\,\mathrm dx=C\\ &2.\int1\,\mathrm dx=\int \mathrm dx=x+C\\ &3.\int x^a\,\mathrm dx=\frac{1}{a+1}x^{a+1}+C(a\not=-1)\\ &4.\int x^{-1}\,\mathrm dx=\int\frac{1}{x}\mathrm dx=\ln |x|+C\\ &5.\int a^x\,\mathrm dx=\frac{a^x}{\ln a}+C\\ &6.\int e^x\,\mathrm dx=e^x+C\\ &7.\int \cos x\,\mathrm dx=\sin x+C\\ &8.\int \sin x\,\mathrm dx=-\cos x+C\\ &9.\int \sec^2x\,\mathrm dx=\tan x+C\\ &10.\int \csc^2x\,\mathrm dx=-\cot x+C\\ &11.\int\sec x\tan x\,\mathrm dx=\sec x+C\\ &12.\int\csc x\cot x\,\mathrm dx=-\csc x+C\\ &13.\int\frac{1}{1+x^2}\,\mathrm dx=\arctan x+C=-\mathrm{arccot} x+C_1\\ &14.\int\frac{1}{\sqrt{1-x^2}}\,\mathrm dx=\arcsin x+C=-\arccos x+C_1\\ &15.\int\cosh x\,\mathrm dx=\int\frac{e^{x}+e^{-x}}{2}=\sinh x+C\\ &16.\int\sinh x\,\mathrm dx=\int\frac{e^x+e^{-x}}{2}=\cosh x+C\\ \end{aligned} 1.∫0dx=C2.∫1dx=∫dx=x+C3.∫xadx=a+11xa+1+C(a=−1)4.∫x−1dx=∫x1dx=ln∣x∣+C5.∫axdx=lnaax+C6.∫exdx=ex+C7.∫cosxdx=sinx+C8.∫sinxdx=−cosx+C9.∫sec2xdx=tanx+C10.∫csc2xdx=−cotx+C11.∫secxtanxdx=secx+C12.∫cscxcotxdx=−cscx+C13.∫1+x21dx=arctanx+C=−arccotx+C114.∫1−x21dx=arcsinx+C=−arccosx+C115.∫coshxdx=∫2ex+e−x=sinhx+C16.∫sinhxdx=∫2ex+e−x=coshx+C
说明:
4:如果写成
ln
x
+
C
\ln x+C
lnx+C,那么显然原函数的定义域比被积函数要小。由于原函数定义域中部分点不可导,被积函数定义域一定小于原函数,故而这其中肯定有问题。
13:
arctan
x
+
a
r
c
c
o
t
x
=
π
2
\arctan x+\mathrm{arccot}x=\frac{\pi}{2}
arctanx+arccotx=2π
从这里我们可以有几点很有益的理解:
- (不定积分正确的量标)两边求导后等式成立即可。
- 对这个式子,我们求导后知道,左边等于一个常数,然后代入特值即可。
- 此处的 C C C是可变常数,是函数类的标记。并不是一个恒定的常数,否则这里就会直接得出 arctan x + a r c c o t x = 0 \arctan x+\mathrm{arccot}x=0 arctanx+arccotx=0的荒谬结果。
1.2. 不定积分的三大法宝
1.2.1. 不定积分的线性运算法则
(正是因为不定积分只有线性运算性质而没有乘除运算性质,所以会比导数运算麻烦很多)
若 ∫ f ( x ) d x , ∫ g ( x ) d x \int f(x)\,\mathrm dx,\int g(x)\,\mathrm dx ∫f(x)dx,∫g(x)dx均存在, ∀ α , β \forall \alpha,\beta ∀α,β为常数,( α , β \alpha, \beta α,β不同时为0),则 ∫ [ α f ( x ) + β g ( x ) ] d x \int[\alpha f(x)+\beta g(x)]\,\mathrm dx ∫[αf(x)+βg(x)]dx(存在) = α ∫ f ( x ) d x + β ∫ g ( x ) d x =\alpha\int f(x)\,\mathrm dx+\beta\int g(x)\,\mathrm dx =α∫f(x)dx+β∫g(x)dx
证: ( α ∫ f ( x ) d x + β ∫ g ( x ) d x ) ′ = 导 数 的 线 性 运 算 法 则 α ( ∫ f ( x ) d x ) ′ + β ( ∫ g ( x ) d x ) ′ = 不 定 积 分 定 义 α f ( x ) + β g ( x ) \Big(\alpha\int f(x)\,\mathrm dx+\beta\int g(x)\,\mathrm dx\Big)'\xlongequal{导数的线性运算法则}\alpha\big(\int f(x)\,\mathrm dx\big)'+\beta\big(\int g(x)\,\mathrm dx\big)'\xlongequal{不定积分定义}\alpha f(x)+\beta g(x) (α∫f(x)dx+β∫g(x)dx)′导数的线性运算法则α(∫f(x)dx)′+β(∫g(x)dx)′不定积分定义αf(x)+βg(x),而且对应原式中 ∫ f ( x ) / g ( x ) d x \int f(x)\big/g(x)\,\mathrm dx ∫f(x)/g(x)dx均能表示对应着一族函数,从而这个表示是成立的。
1.2.2. 不定积分与凑微分(第一换元法)
tan x d x = ∫ sin x cos x d x = ? \tan x\,\mathrm dx=\int \frac{\sin x}{\cos x}\mathrm dx=? tanxdx=∫cosxsinxdx=?
若 F ′ ( x ) = f ( u ) F'(x)=f(u) F′(x)=f(u),则 [ F ( φ ( x ) ) ] ′ = F ′ ( φ ( x ) ) φ ′ ( x ) = f ( φ ( x ) ) φ ′ ( x ) [F(\varphi(x))]'=F'(\varphi(x))\varphi'(x)=f(\varphi(x))\varphi'(x) [F(φ(x))]′=F′(φ(x))φ′(x)=f(φ(x))φ′(x)(利用微分的一阶形式不变性)
-
思
考
:
\color{#00FFFF}{思考:}
思考:
求 ∫ g ( x ) d x \int g(x)\,\mathrm dx ∫g(x)dx,如果 g ( x ) d x = d F g(x)\,\mathrm dx=\mathrm dF g(x)dx=dF,则 ∫ g ( x ) d x = F + C \int g(x)\,\mathrm dx=F+C ∫g(x)dx=F+C
那么,利用上述思考,层层向上凑,(先凑出
φ
(
x
)
\varphi(x)
φ(x))如果
g
(
x
)
d
x
=
f
(
φ
(
x
)
)
φ
′
(
x
)
d
x
=
F
′
(
u
)
=
f
(
u
)
找
到
F
(
u
)
f
(
φ
(
x
)
)
φ
′
(
x
)
d
x
=
φ
(
x
)
=
u
消
解
一
层
f
(
u
)
d
u
=
d
F
(
u
)
g(x)\,\mathrm dx=f(\varphi(x))\varphi'(x)\,\mathrm dx\xlongequal[F'(u)=f(u)]{找到F(u)}f(\varphi(x))\varphi'(x)\,\mathrm dx\xlongequal[\varphi(x)=u]{消解一层}f(u)\,\mathrm du=\mathrm dF(u)
g(x)dx=f(φ(x))φ′(x)dx找到F(u)F′(u)=f(u)f(φ(x))φ′(x)dx消解一层φ(x)=uf(u)du=dF(u),已经得到了思考中的结构,积分可得
F
(
φ
(
x
)
)
+
C
F(\varphi(x))+C
F(φ(x))+C。可以多层使用直至找到。
其中找到
φ
′
(
x
)
\varphi'(x)
φ′(x)结构的过程就是凑微分。帮助
φ
(
x
)
\varphi(x)
φ(x)找到“衣服”然后穿回原来的人模狗样。直到发现穿到某一层可以出去见人(有对应微分的公式)
然后我们很容易得到两个公式:
17.
∫
tan
x
d
x
=
−
ln
∣
cos
x
∣
+
C
18.
∫
cot
x
d
x
=
ln
∣
sin
x
∣
+
C
\begin{aligned} &17.\int\tan x\,\mathrm dx=-\ln|\cos x|+C\\ &18.\int\cot x\,\mathrm dx=\ln |\sin x|+C \end{aligned}
17.∫tanxdx=−ln∣cosx∣+C18.∫cotxdx=ln∣sinx∣+C
-
补
充
:
\color{#00FFFF}{补充:}
补充:
(一些可用的微分关系式) - 1 。 1^。 1。 d x = 1 ⋅ d x = 1 a d ( a x + b ) ( a ≠ 0 ) \mathrm dx=1\cdot \mathrm dx=\frac{1}{a}\mathrm d(ax+b)(a\not=0) dx=1⋅dx=a1d(ax+b)(a=0)
- 2 。 2^。 2。 x d x = 1 2 d x ( x 2 ± a 2 ) x\mathrm dx=\frac{1}{2}\mathrm dx(x^2\pm a^2) xdx=21dx(x2±a2)
- 3 。 3^。 3。 x d x = − 1 2 d ( a 2 − x 2 ) x\mathrm dx=-\frac{1}{2}\mathrm d(a^2-x^2) xdx=−21d(a2−x2)
- 4 。 4^。 4。 cos x d x = d sin x \cos x\mathrm dx=\mathrm d\sin x cosxdx=dsinx
- 5 。 5^。 5。 sin x = − d cos x \sin x=-\mathrm d\cos x sinx=−dcosx
- 6 。 6^。 6。 1 x d x = d ln ∣ x ∣ = i f x > 0 d ln x \frac{1}{x}\mathrm dx=\mathrm d\ln|x|\xlongequal{if \,\,x>0}\mathrm d\ln x x1dx=dln∣x∣ifx>0dlnx
- 7 。 7^。 7。 e x d x = d e x e^x\mathrm dx=\mathrm de^x exdx=dex
随后我们又可以推出
19.
∫
1
a
2
+
x
2
d
x
(
a
≠
0
)
=
1
a
arctan
x
a
+
C
20.
∫
1
a
2
−
x
2
d
x
(
a
>
0
)
=
arcsin
x
a
+
C
21.
∫
1
a
2
−
x
2
=
1
2
a
∫
(
1
a
−
x
+
1
a
+
x
)
=
1
2
a
ln
∣
a
+
x
a
−
x
∣
+
C
22.
∫
sec
x
d
x
=
∫
1
cos
x
d
x
=
∫
cos
x
cos
2
x
d
x
=
∫
1
1
−
sin
2
x
d
sin
x
=
1
2
ln
∣
1
+
sin
x
1
−
sin
x
∣
+
C
=
1
2
ln
∣
(
1
+
sin
x
)
2
cos
2
x
∣
+
C
=
ln
∣
sec
x
+
tan
x
∣
+
C
(
正
切
+
正
割
)
23.
(
同
22
)
∫
csc
x
d
x
=
ln
∣
csc
x
−
cot
x
∣
+
C
24.
∫
e
a
x
d
x
(
a
≠
0
)
=
1
a
e
a
x
+
C
25.
∫
cos
a
x
d
x
=
1
a
sin
a
x
+
C
26.
∫
sin
a
x
d
x
=
−
1
a
cos
a
x
+
C
\begin{aligned} &19.\int\frac{1}{a^2+x^2}\mathrm dx(a\not=0)=\frac{1}{a}\arctan\frac{x}{a}+C\\ &20.\int\frac{1}{\sqrt{a^2-x^2}}\mathrm dx(a>0)=\arcsin\frac{x}{a}+C\\ &21.\int\frac{1}{a^2-x^2}=\frac{1}{2a}\int\Big(\frac{1}{a-x}+\frac{1}{a+x}\Big)=\frac{1}{2a}\ln\Big|\frac{a+x}{a-x}\Big|+C\\ &22.\int\sec x\mathrm dx=\int\frac{1}{\cos x}\mathrm dx=\int\frac{\cos x}{\cos^2x}\mathrm dx=\int\frac{1}{1-\sin^2x}\mathrm d\sin x\\&=\frac{1}{2}\ln\Big|\frac{1+\sin x}{1-\sin x}\Big|+C=\frac{1}{2}\ln\Big|\frac{(1+\sin x)^2}{\cos^2 x}\Big|+C=\ln\Big|\sec x+\tan x\Big|+C(正切+正割)\\ &23.(同22)\int\csc x\mathrm dx=\ln\Big|\csc x-\cot x\Big|+C\\ &24.\int e^{ax}\mathrm dx(a\not=0)=\frac{1}{a}e^{ax}+C\\ &25.\int \cos ax\mathrm dx=\frac{1}{a}\sin ax+C\\ &26.\int\sin ax\mathrm dx=-\frac{1}{a}\cos ax+C \end{aligned}
19.∫a2+x21dx(a=0)=a1arctanax+C20.∫a2−x21dx(a>0)=arcsinax+C21.∫a2−x21=2a1∫(a−x1+a+x1)=2a1ln∣∣∣a−xa+x∣∣∣+C22.∫secxdx=∫cosx1dx=∫cos2xcosxdx=∫1−sin2x1dsinx=21ln∣∣∣1−sinx1+sinx∣∣∣+C=21ln∣∣∣cos2x(1+sinx)2∣∣∣+C=ln∣∣∣secx+tanx∣∣∣+C(正切+正割)23.(同22)∫cscxdx=ln∣∣∣cscx−cotx∣∣∣+C24.∫eaxdx(a=0)=a1eax+C25.∫cosaxdx=a1sinax+C26.∫sinaxdx=−a1cosax+C
但还是有一些问题不能解决,比如接下来这个例题
例 ∫ a 2 − x 2 d x ( a > 0 ) \int\sqrt{a^2-x^2}\mathrm dx(a>0) ∫a2−x2dx(a>0)
1.2.3. 不定积分的变量代换(第二换元法)
f ( x ) d x = f ( φ ( t ) ) d φ ( t ) = x = φ ( t ) 可 导 f ( φ ( t ) ) φ ′ ( t ) d t = F ′ ( t ) = f ( φ ( t ) ) φ ′ ( t ) d F ( t ) = 代 回 t = φ − 1 ( x ) x = φ ( t ) 有 反 函 数 d F ( φ − 1 ( x ) ) f(x)\mathrm dx=f(\varphi(t))\mathrm d\varphi(t)\xlongequal{x=\varphi(t)可导}f(\varphi(t))\varphi'(t)\mathrm dt\xlongequal{F'(t)=f(\varphi(t))\varphi'(t)}\mathrm dF(t)\xlongequal[代回t=\varphi^{-1}(x)]{x=\varphi(t)有反函数}\mathrm dF(\varphi^{-1}(x)) f(x)dx=f(φ(t))dφ(t)x=φ(t)可导f(φ(t))φ′(t)dtF′(t)=f(φ(t))φ′(t)dF(t)x=φ(t)有反函数代回t=φ−1(x)dF(φ−1(x))(思路相当于先脱一件背心,然后再顺利轻松地穿好<即代换后的式子有对应积分公式>)
使用条件
如果被积函数中含有下列根式,不能用前面的方法解决,就用变量代换:
- 1 。 1^。 1。 a 2 − x 2 \sqrt{a^2-x^2} a2−x2,令 x = a sin t , t ∈ [ − π 2 , π 2 ] x=a\sin t, t\in[-\frac{\pi}{2},\frac{\pi}{2}] x=asint,t∈[−2π,2π]
- 2 。 2^。 2。 a 2 + x 2 \sqrt{a^2+x^2} a2+x2,令 x = a tan t , t ∈ ( − π 2 , π 2 ) x=a\tan t, t\in(-\frac{\pi}{2}, \frac{\pi}{2}) x=atant,t∈(−2π,2π)
- 3 。 3^。 3。 x 2 − a 2 \sqrt{x^2-a^2} x2−a2,令 x = a sec t , t ∈ [ 0 , π 2 ) ∪ ( π 2 , π ] x=a\sec t, t\in[0, \frac{\pi}{2})\cup(\frac{\pi}{2}, \pi] x=asect,t∈[0,2π)∪(2π,π]
- 4 。 4^。 4。 a x + b c x + d n \sqrt[n]{\frac{ax+b}{cx+d}} ncx+dax+b,令 x = a x + b c x + d n x=\sqrt[n]{\frac{ax+b}{cx+d}} x=ncx+dax+b,相当于是直接设出反函数,然后再找怎样把原有结构简化成多项式结构,积分之后用反函数关系代回。类似 a x + b n \sqrt[n]{ax+b} nax+b的结构是这类的特殊情况
代回的时候,用三角形法则。利用 t t t角对应的两边构造直角三角形。
27.
∫
1
x
2
+
a
2
d
x
(
a
>
0
)
=
ln
(
x
+
x
2
+
a
2
)
+
C
28.
∫
1
x
2
−
a
2
d
x
=
ln
∣
x
+
x
2
−
a
2
∣
+
C
\begin{aligned} &27.\int\frac{1}{\sqrt{x^2+a^2}}\,\mathrm dx(a>0)=\ln(x+\sqrt{x^2+a^2})+C\\ &28.\int\frac{1}{\sqrt{x^2-a^2}}\,\mathrm dx=\ln|x+\sqrt{x^2-a^2}|+C \end{aligned}
27.∫x2+a21dx(a>0)=ln(x+x2+a2)+C28.∫x2−a21dx=ln∣x+x2−a2∣+C
第二个需要绝对值,因为
x
x
x取负数时,原函数无意义。
几个例题
1 。 1^。 1。 ∫ 1 x + x 3 d x \int\frac{1}{\sqrt x+\sqrt[3]{x}}\,\mathrm dx ∫x+3x1dx,找根式的最小公倍数
2 。 2^。 2。 x 2 ( 1 − x ) 1000 d x x^2(1-x)^{1000}\mathrm dx x2(1−x)1000dx:把括号换成简单的独元
3 。 3^。 3。 ∫ x 2 ( 2 x + 1 ) 10 d x \int\frac{x^2}{(2x+1)^{10}}\,\mathrm dx ∫(2x+1)10x2dx:把分母换成独元
4 。 4^。 4。 ∫ x 2 + a 2 d x \int\sqrt{x^2+a^2}\,\mathrm dx ∫x2+a2dx(这个看似和其他长得差不多,但是极其难解,分部+加减项+产生原式的移项法+套27)
2. 定积分
2.1. 意义
定义:设
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a, b]
[a,b]上有定义,若
lim
x
→
0
∑
i
=
1
n
f
(
ξ
i
)
Δ
x
i
(
存
在
且
唯
一
)
=
I
=
△
∫
a
b
f
(
x
)
d
x
\lim\limits_{x\to0}\sum_{i=1}^n f(\xi_i)\Delta x_i(存在且唯一)=I\xlongequal{\vartriangle}\int_a^b f(x)\,\mathrm dx
x→0limi=1∑nf(ξi)Δxi(存在且唯一)=I△∫abf(x)dx
则
I
I
I称为
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a, b]
[a,b]上的定积分。
[
a
,
b
]
[a,b]
[a,b]称为积分区间,
b
b
b称为积分上限,
a
a
a称为积分下限。
2.1.1. 几何意义
若 x ∈ [ a , b ] x\in[a, b] x∈[a,b]时, ∫ a b f ( x ) d x \int_a^b f(x)\,\mathrm dx ∫abf(x)dx存在,则 ∫ a b f ( x ) d x \int_a^b f(x)\,\mathrm dx ∫abf(x)dx表示曲线 y = f ( x ) y=f(x) y=f(x)与 x = a , x = b , x x=a, x= b,x x=a,x=b,x轴围成的各曲边梯形带权面积之和,权值与相应区段曲线的符号一致。
2.1.2. 物理意义
变力做功
2.2. 可积性
2.2.1. 可积的必要条件
若 f ( x ) f(x) f(x)在 [ a , b ] [a, b] [a,b]上可积,则 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上一定有界。反之不成立。
2.2.2. 充分条件
- 若 f ( x ) ∈ [ a , b ] f(x)\in[a,b] f(x)∈[a,b],则 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上可积,反之不成立
- 若 f ( x ) f(x) f(x)在 [ a , b ] [a, b] [a,b]有界,且 f ( x ) f(x) f(x)只有有限个间断点(只有有限个第一类间断点),则 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上可积,反之不成立。
- 若
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上单调,则
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上可积,反之不成立。(辅助证明有限个第一类间断的条件)
- (子区间的可积性)若 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上可积,且 [ c , d ] ⊂ [ a , b ] [c,d]\subset[a,b] [c,d]⊂[a,b],则 f ( x ) f(x) f(x)在 [ c , d ] [c,d] [c,d]上可积
- (可积函数具有绝对值趋同性)若 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上可积,则 ∣ f ( x ) ∣ |f(x)| ∣f(x)∣在 [ a , b ] [a,b] [a,b]上可积,反之不成立。
2.3. 定积分的性质
规定
- ∫ a b f ( x ) d x = − ∫ b a f ( x ) d x \int_a^b f(x)\,\mathrm dx=-\int_b^a f(x)\,\mathrm dx ∫abf(x)dx=−∫baf(x)dx
- ∫ a a f ( x ) d x = 0 \int_a^a f(x)\,\mathrm dx=0 ∫aaf(x)dx=0
我们还有一个常用结论: ∫ a b d x = b − a \int_a^b \,\mathrm dx=b-a ∫abdx=b−a
-
1 。 1^。 1。线性运算法则(不限制上限大于下限)
∫ a b [ α f ( x ) + β g ( x ) ] d x = α ∫ a b f ( x ) d x + β ∫ a b g ( x ) d x \int_a^b[\alpha f(x)+\beta g(x)]\,\mathrm dx=\alpha\int_a^b f(x)\,\mathrm dx+\beta \int_a^b g(x)\,\mathrm dx ∫ab[αf(x)+βg(x)]dx=α∫abf(x)dx+β∫abg(x)dx -
2 。 2^。 2。区间的可加性(不限制上限大于下限)
设 a , b , c a,b, c a,b,c是不相等的三个常数,且 f ( x ) f(x) f(x)在 [ m i n { a , b , c } , m a x { a , b , c } ] [min\{a,b,c\}, max\{a,b,c\}] [min{a,b,c},max{a,b,c}]上可积,则 ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_a^b f(x)\,\mathrm dx = \int_a^c f(x)\,\mathrm dx+\int_c^b f(x)\,\mathrm dx ∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx -
3 。 3^。 3。(积分保号性)若 x ∈ [ a , b ] , f ( x ) ≥ 0 x\in[a,b],f(x)\geq 0 x∈[a,b],f(x)≥0且 ∫ a b f ( x ) d x \int_a^b f(x)\,\mathrm dx ∫abf(x)dx存在,则 ∫ a b f ( x ) d x ≥ 0 \int_a^bf(x)\,\mathrm dx\geq0 ∫abf(x)dx≥0
- 推论(积分保序性) x ∈ [ a , b ] , f ( x ) ≥ g ( x ) x\in[a,b],f(x)\geq g(x) x∈[a,b],f(x)≥g(x)且 ∫ a b f ( x ) d x , ∫ a b g ( x ) d x \int_a^bf(x)\,\mathrm dx, \int_a^bg(x)\,\mathrm dx ∫abf(x)dx,∫abg(x)dx都存在,则 ∫ a b f ( x ) d x ≥ ∫ a b g ( x ) d x \int_a^bf(x)\,\mathrm dx \geq \int_a^bg(x)\,\mathrm dx ∫abf(x)dx≥∫abg(x)dx
-
4 。 4^。 4。(不恒等可以严格保序)若 f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)∈C[a,b]且 x ∈ [ a , b ] , f ( x ) ≥ 0 , f ( x ) ≢ 0 x\in[a,b],f(x)\geq 0, f(x)\not \equiv0 x∈[a,b],f(x)≥0,f(x)≡0,则 ∫ a b f ( x ) d x > 0 \int_a^bf(x)\,\mathrm dx>0 ∫abf(x)dx>0
- 推论 若 f ( x ) , g ( x ) ∈ C [ a , b ] f(x),g(x)\in C[a,b] f(x),g(x)∈C[a,b]且 x ∈ [ a , b ] , f ( x ) ≥ g ( x ) , f ( x ) ≢ g ( x ) x\in[a,b],f(x)\geq g(x),f(x)\not\equiv g(x) x∈[a,b],f(x)≥g(x),f(x)≡g(x)则 ∫ a b f ( x ) d x > ∫ a b g ( x ) d x \int_a^b f(x)\,\mathrm dx>\int_a^b g(x)\,\mathrm dx ∫abf(x)dx>∫abg(x)dx
-
5 。 5^。 5。(积分的绝对值不等式)若 f ( x ) f(x) f(x)在 [ a , b ] [a, b] [a,b]上可积,则 ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x |\int_a^b f(x)\,\mathrm dx|\leq\int_a^b|f(x)|\,\mathrm dx ∣∫abf(x)dx∣≤∫ab∣f(x)∣dx
- 可以利用绝对值不等式来理解。现使用(不等式性质)3证明:当 x ∈ [ a , b ] , − ∣ f ( x ) ∣ ≤ f ( x ) ≤ ∣ f ( x ) ∣ ⇒ − ∫ a b ∣ f ( x ) ∣ d x ≤ ∫ a b f ( x ) d x ≤ ∫ a b ∣ f ( x ) ∣ d x x\in[a,b],-|f(x)|\leq f(x)\leq |f(x)|\Rightarrow-\int_a^b|f(x)|\,\mathrm dx\leq \int_a^bf(x)\,\mathrm dx\leq \int_a^b|f(x)|\,\mathrm dx x∈[a,b],−∣f(x)∣≤f(x)≤∣f(x)∣⇒−∫ab∣f(x)∣dx≤∫abf(x)dx≤∫ab∣f(x)∣dx,即证
-
6 。 6^。 6。估值定理
若 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上可积, m ≤ f ( x ) ≤ M , x ∈ [ a , b ] , m\leq f(x)\leq M, x\in[a,b], m≤f(x)≤M,x∈[a,b],其中 m , M m,M m,M为常数,则 m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ ∫ a b M d x = M ( b − a ) m(b-a)\leq\int_a^bf(x)\,\mathrm dx\leq \int_a^b M\,\mathrm dx = M(b-a) m(b−a)≤∫abf(x)dx≤∫abMdx=M(b−a) -
7 。 7^。 7。积分中值定理(不要求上限大于下限)
若 f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)∈C[a,b],则至少存在一点 ξ ∈ [ a , b ] \xi\in[a,b] ξ∈[a,b]使得 ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int_a^bf(x)\,\mathrm dx=f(\xi)(b-a) ∫abf(x)dx=f(ξ)(b−a).
其中 ∫ a b f ( x ) d x b − a = f ( ξ ) \frac{\int_a^bf(x)\,\mathrm dx}{b-a}=f(\xi) b−a∫abf(x)dx=f(ξ)称为 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上函数的平均值,当 f ( x ) ≥ 0 , ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) f(x)\geq0, \int_a^bf(x)\,\mathrm dx=f(\xi)(b-a) f(x)≥0,∫abf(x)dx=f(ξ)(b−a)
2.4. 变上限积分
2.4.1. 变上限函数
若 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续, ∀ x ∈ [ a , b ] , f ( t ) \forall x\in[a,b],f(t) ∀x∈[a,b],f(t)在 [ a , b ] [a,b] [a,b]上连续,则 ∫ a x f ( t ) d t \int_a^xf(t)\,\mathrm dt ∫axf(t)dt存在,对每一个 x ∈ [ a , b ] x\in[a,b] x∈[a,b],在定积分 ∫ a x f ( t ) d t \int_a^xf(t)\,\mathrm dt ∫axf(t)dt对应法则下,对应唯一的一个值 ∫ a x f ( t ) d t \int_a^xf(t)\,\mathrm dt ∫axf(t)dt,按照函数定义知 ∫ a x f ( t ) d t \int_a^xf(t)\,\mathrm dt ∫axf(t)dt是区间 [ a , b ] [a,b] [a,b]上 x x x的函数,称为变上限函数,记作 G ( x ) G(x) G(x)即 G ( x ) = ∫ a x f ( t ) d t , x ∈ [ a , b ] G(x)=\int_a^xf(t)\,\mathrm dt, x\in[a,b] G(x)=∫axf(t)dt,x∈[a,b]
2.4.2. 变上限求导定理
微积分基本定理,若 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上连续,则 G ( x ) = ∫ a x f ( t ) d t G(x)=\int_a^xf(t)\,\mathrm dt G(x)=∫axf(t)dt在 [ a , b ] [a,b] [a,b]上可导,且 G ′ ( x ) = f ( x ) G'(x)=f(x) G′(x)=f(x).
证:
∀
x
∈
[
a
,
b
]
,
lim
Δ
x
→
0
G
(
x
+
Δ
x
)
−
G
(
x
)
Δ
x
=
lim
Δ
x
→
0
∫
a
x
+
Δ
x
f
(
t
)
d
t
−
∫
a
x
f
(
t
)
d
t
Δ
x
=
lim
Δ
x
→
0
∫
a
x
+
Δ
x
f
(
t
)
d
t
+
∫
x
a
f
(
t
)
d
t
Δ
x
=
lim
Δ
x
→
0
∫
x
x
+
Δ
x
f
(
t
)
d
t
Δ
x
=
积
分
中
值
定
理
lim
Δ
x
→
0
f
(
ξ
)
Δ
x
Δ
x
\forall x\in[a,b],\lim\limits_{\Delta x\to0}\frac{G(x+\Delta x)-G(x)}{\Delta x}=\lim\limits_{\Delta x\to0}\frac{\int_a^{x+\Delta x}f(t)\,\mathrm dt-\int_a^xf(t)\,\mathrm dt}{\Delta x}=\lim\limits_{\Delta x\to0}\frac{\int_a^{x+\Delta x}f(t)\,\mathrm dt+\int_x^af(t)\,\mathrm dt}{\Delta x}=\lim\limits_{\Delta x\to0}\frac{\int_x^{x+\Delta x}f(t)\,\mathrm dt}{\Delta x}\xlongequal{积分中值定理}\lim\limits_{\Delta x\to0}\frac{f(\xi)\Delta x}{\Delta x}
∀x∈[a,b],Δx→0limΔxG(x+Δx)−G(x)=Δx→0limΔx∫ax+Δxf(t)dt−∫axf(t)dt=Δx→0limΔx∫ax+Δxf(t)dt+∫xaf(t)dt=Δx→0limΔx∫xx+Δxf(t)dt积分中值定理Δx→0limΔxf(ξ)Δx,其中
ξ
\xi
ξ介于
x
,
x
+
Δ
x
x,x+\Delta x
x,x+Δx之间。故原式
=
lim
ξ
→
x
f
(
ξ
)
=
f
(
x
)
=\lim\limits_{\xi\to x}f(\xi)=f(x)
=ξ→xlimf(ξ)=f(x)
即:
G
′
(
x
)
=
(
∫
a
x
f
(
t
)
d
t
)
′
=
d
d
x
∫
a
x
f
(
t
)
d
t
G'(x)=\Big(\int_a^xf(t)\,\mathrm dt\Big)'=\frac{\mathrm d}{\mathrm dx}\int_a^xf(t)\,\mathrm dt
G′(x)=(∫axf(t)dt)′=dxd∫axf(t)dt
或者直接写作
(
∫
a
x
f
(
x
)
d
x
)
′
=
f
(
x
)
\Big(\int_a^xf(x)\,\mathrm dx\Big)'=f(x)
(∫axf(x)dx)′=f(x)
推论 可积的一个充分条件:
若
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,则
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上一定由原函数。
证明:令 G ( x ) = ∫ a x f ( t ) d t , x ∈ [ a , b ] , G ′ ( x ) = f ( x ) G(x)=\int_a^xf(t)\,\mathrm dt, x\in[a,b],G'(x)=f(x) G(x)=∫axf(t)dt,x∈[a,b],G′(x)=f(x),这个变上限函数就是 f ( x ) f(x) f(x)的一个原函数。所以连续函数如果求不出来原函数是水平问题😏。
2.5. Newton-Leibniz公式
若 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上连续且 F ( x ) F(x) F(x)是 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]的一个原函数。则 ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_a^bf(x)\,\mathrm dx=F(b)-F(a) ∫abf(x)dx=F(b)−F(a)
证明:由
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,知
∫
a
x
f
(
t
)
d
t
\int_a^xf(t)\,\mathrm dt
∫axf(t)dt是
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上的一个原函数,又
F
(
x
)
F(x)
F(x)也是
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上的一个原函数。
∫
a
x
f
(
t
)
d
t
=
F
(
x
)
+
C
,
x
∈
[
a
,
b
]
\int_a^xf(t)\,\mathrm dt=F(x)+C, x\in[a,b]
∫axf(t)dt=F(x)+C,x∈[a,b]令
x
=
a
x=a
x=a得
∫
a
a
f
(
t
)
d
t
=
F
(
a
)
+
C
=
0
\int_a^af(t)\,\mathrm dt=F(a)+C=0
∫aaf(t)dt=F(a)+C=0,从而得出
C
=
−
F
(
a
)
C=-F(a)
C=−F(a),令
x
=
b
x=b
x=b,得
∫
a
b
f
(
t
)
d
t
=
哑
元
性
∫
a
b
f
(
x
)
d
x
=
F
(
b
)
−
F
(
a
)
=
△
F
(
x
)
∣
a
b
\int_a^bf(t)\,\mathrm dt\xlongequal{哑元性}\int_a^bf(x)\,\mathrm dx=F(b)-F(a)\xlongequal{\vartriangle}F(x)\Big|_a^b
∫abf(t)dt哑元性∫abf(x)dx=F(b)−F(a)△F(x)∣∣∣ab当
b
<
a
b<a
b<a时,
f
(
x
)
f(x)
f(x)在
[
b
,
a
]
[b,a]
[b,a]上连续,则
∫
a
b
f
(
x
)
d
x
=
−
∫
b
a
f
(
x
)
d
x
=
−
[
F
(
a
)
−
F
(
b
)
]
=
F
(
b
)
−
F
(
a
)
\int_a^bf(x)\,\mathrm dx=-\int_b^af(x)\,\mathrm dx=-[F(a)-F(b)]=F(b)-F(a)
∫abf(x)dx=−∫baf(x)dx=−[F(a)−F(b)]=F(b)−F(a)