Part 12(1) 广义积分(无穷积分和瑕积分)

广义积分和含参积分

  • 将黎曼积分的积分区间从闭区间转为无穷,则成为无穷积分。
  • 如果在积分区间上,存在值为无穷的情况,则成为瑕积分。

两类积分合称广义积分。

一般的想法是,将广义积分转化称一次定积分+一次极限。

1. 概念

1.1. 无穷积分

1.1.1. 正无穷的积分

设函数 f ( x ) f(x) f(x) [ a , + ∞ ) [a,+\infty) [a,+)上有定义,对于任何 A > a , f ( x ) A>a,f(x) A>a,f(x) [ a , A ] [a,A] [a,A]上黎曼可积,若
lim ⁡ A → + ∞ ∫ a A f ( x )   d x = M \lim\limits_{A\to+\infty}\int_a^Af(x)\,\mathrm dx=M A+limaAf(x)dx=M
则称 M M M f ( x ) f(x) f(x) [ a , + ∞ ) [a,+\infty) [a,+)上的无穷积分。记
lim ⁡ A → + ∞ f ( x )   d x = ∫ a + ∞ f ( x )   d x \lim\limits_{A\to+\infty}f(x)\,\mathrm dx=\int_a^{+\infty}f(x)\,\mathrm dx A+limf(x)dx=a+f(x)dx
∫ a + ∞ f ( x )   d x \int_a^{+\infty}f(x)\,\mathrm dx a+f(x)dx收敛,否则为发散。

类似的可以写出负无穷的情况(略去)

1.1.2. 正负无穷

同样也可以研究 R \mathbb{R} R的情况。

函数 f ( x ) f(x) f(x)定义在 ( − ∞ , + ∞ ) (-\infty, +\infty) (,+)上,任意实数 a a a,都有
∫ a + ∞ f ( x )   d x , ∫ − ∞ a f ( x )   d x \int_a^{+\infty}f(x)\,\mathrm dx, \int_{-\infty}^af(x)\,\mathrm dx a+f(x)dx,af(x)dx
收敛,则称 f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty, +\infty) (,+)上的积分收敛。若存在一个 a a a,使得两个积分其一不存在,则称原积分发散。

这提供了一个判别发散的好思路。

利用极限的语言,也可以写作:
lim ⁡ A → + ∞ B → − ∞ ∫ A B f ( x )   d x \lim\limits_{{A\to+\infty}\atop{B\to-\infty}}\int_A^Bf(x)\,\mathrm dx BA+limABf(x)dx
其中 A , B A,B A,B相互独立。

1.2. 瑕积分

瑕点就是积分区间上或边界处值无界的点。一般情况,若 x = a , b x=a,b x=a,b均为瑕点,那么
lim ⁡ ε → 0 + δ → 0 + ∫ a + ε b − δ f ( x )   d x \lim\limits_{\varepsilon\to0+\atop{\delta\to0+}}\int_{a+\varepsilon}^{b-\delta}f(x)\,\mathrm dx δ0+ε0+lima+εbδf(x)dx
就是一个瑕积分。若这个重极限收敛,则称瑕积分收敛。

2. 广义积分的主要理论结果

2.1. 无穷积分的性质

2.1.1. 线性性质

如果 f 1 ( x ) , f 2 ( x ) f_1(x),f_2(x) f1(x),f2(x) ( a , + ∞ ) (a,+\infty) (a,+)上都收敛,那么
∫ a + ∞ [ k 1 f 1 ( x ) + k 2 ( x ) f 2 ( x ) ]   d x = k 1 ∫ a + ∞ f 1 ( x )   d x + k 2 ∫ a + ∞ f 2 ( x )   d x \int_a^{+\infty}[k_1f_1(x)+k_2(x)f_2(x)]\,\mathrm dx=k_1\int_a^{+\infty}f_1(x)\,\mathrm dx+k_2\int_a^{+\infty}f_2(x)\,\mathrm dx a+[k1f1(x)+k2(x)f2(x)]dx=k1a+f1(x)dx+k2a+f2(x)dx

这里给出了判定发散的一种通用方法,即
发 散 + 收 敛 = 发 散 发散+收敛=发散 +=
这和极限相加中得到的结论是一致的。

2.1.2. 有限端族的积分同敛散

∫ a + ∞ f ( x )   d x \int_a^{+\infty}f(x)\,\mathrm d x a+f(x)dx ∫ b + ∞ f ( x )   d x \int_b^{+\infty}f(x)\,\mathrm dx b+f(x)dx有限端都是下限,若函数 f ( x ) f(x) f(x)在任何有限区间 [ a , u ] [a,u] [a,u]上可积,则称它们为同一有限端的积分族。
∫ a + ∞ f ( x )   d x \int_a^{+\infty}f(x)\,\mathrm dx a+f(x)dx

∫ b + ∞ f ( x )   d x \int_b^{+\infty}f(x)\,\mathrm dx b+f(x)dx
同敛散。

2.2. 无穷积分的审敛法

类比无穷级数中的相关知识,我们都只是简单给出定理叙述。

首先给出一个引理:非负可积函数的无穷积分收敛的充要条件是其有界。(单调收敛定理)

这个定理的逆定理可以用来判别发散。

还有如下四个判定定理。

2.2.1. 比较判别法

∃ A > 0 \exist A>0 A>0,当 x > A x>A x>A时, 0 ≤ f ( x ) ≤ K ( x ) 0\leq f(x)\leq K(x) 0f(x)K(x)
则:
∫ a ∞ K ( x )   d x \int_a^\infty K(x)\,\mathrm dx aK(x)dx

∫ 0 ∞ f ( x )   d x \int_0^\infty f(x)\,\mathrm dx 0f(x)dx
的充分非必要条件。

2.2.2. 比较判别的极限形式

类比无穷级数,定义极限形式。

lim ⁡ x → + ∞ f ( x ) K ( x ) = k ∈ ( 0 , + ∞ ) \lim\limits_{x\to+\infty}\frac{f(x)}{K(x)}=k\in(0,+\infty) x+limK(x)f(x)=k(0,+)
则两个无穷积分同敛散

证明方法是利用同阶无穷小的概念。

2.2.3. Dirichlet判别法

∫ a + ∞ f ( x ) g ( x )   d x \int_a^{+\infty}f(x)g(x)\,\mathrm dx a+f(x)g(x)dx
积分 ∫ a A f ( x )   d x \int_a^Af(x)\,\mathrm dx aAf(x)dx有界,又 g ( x ) g(x) g(x)单调趋于零。

2.2.4. Abel判别法

∫ a + ∞ f ( x )   d x \int_a^{+\infty}f(x)\,\mathrm dx a+f(x)dx收敛。且 g ( x ) g(x) g(x)单调有界。

2.3. 常用

将三角函数分成 ( n , ( n + 1 ) π ) (n,(n+1)\pi) (n,(n+1)π)的一系列求和。然后对非三角函数部分进行放缩,得到常数*三角的积分函数。

2.4. 瑕积分的审敛法

2.4.1. 步骤

  • step1:寻找瑕点
  • step2:在瑕点处,利用比较法,将易解的函数替代原函数,求得结果

2.4.2. 比较判别法

常用的中介积分是:
∫ a b d x ( x − a ) p , ∫ a b d x ( x − b ) q \int_a^b\frac{\mathrm dx}{(x-a)^p},\int_a^b\frac{\mathrm dx}{(x-b)^q} ab(xa)pdx,ab(xb)qdx

比较法将不容易求解的函数通过放缩转化为易解的函数。

注意瑕积分中的这个收敛区间和 p p p级数、无穷积分正相反。小于1为收敛。

我们更多地使用

2.4.3. 比较判别法的极限形式

x ∈ ( a , b ] , ∀ [ c , d ] ⊂ ( a , b ] x\in(a,b],\forall[c,d]\subset(a,b] x(a,b],[c,d](a,b]
lim ⁡ x → a + f ( x ) g ( x ) = l ∈ ( 0 , + ∞ ) \lim\limits_{x\to a+}\frac{f(x)}{g(x)}=l\in(0,+\infty) xa+limg(x)f(x)=l(0,+)
则同敛散。

这个极限形式,将瑕积分的审敛问题转化为一个求函数与幂函数的分式结构的瑕点处极限的问题。

  • 注意求解过程中洛必达法则的应用。

    瑕积分时常出现的是分母为0的结构,这种结构不容易消除,即便换元仍然很难满足我们的需要。所以 0 0 \frac{0}{0} 00型的洛必达又派上了用场。

  • 想要看出这个比较极限并不容易,我们的解法是先使用变量代换。从正向解决之后,再反代回来。这是解决极限问题的常用想法。

    科学哲学卡片 以正向代反向

  • 常用的比较结构
    1 x 1 2 + 1 4 \frac{1}{x^{\frac{1}{2}+\frac{1}{4}}} x21+411
    ∫ 0 1 ln ⁡ x \int_0^1\ln x 01lnx

  • 9
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
柯西主值积分的实现步骤如下: 1. 对于被积函数f(z),将其分解为实部u(x,y)和虚部v(x,y)的形式:f(z) = u(x,y) + iv(x,y)。 2. 对于积分路径,可以选择半径为R的圆弧路径,也可以选择其他路径。在本篇回答中,我们选择以原点为圆心,半径为R的圆弧路径。 3. 对于圆弧路径上的积分,可以通过参数化的方法得到积分式子: ∫f(z)dz = ∫[u(Rcosθ,Rsinθ) + iv(Rcosθ,Rsinθ)]{iRe^(iθ)}dθ 其中,θ从0到π或从0到2π,取决于圆弧路径所在的象限。 4. 对于柯西主值积分,需要将积分路径沿实轴分成两段,即从-R到R和从R到-R。对于这两段积分,可以直接计算实部的积分,虚部的积分则为0,即: ∫f(z)dz = ∫[u(Rcosθ,Rsinθ) + iv(Rcosθ,Rsinθ)]{iRe^(iθ)}dθ = ∫[-R,R]u(x,0)dx + i∫[0,π/2]{u(Rcosθ,Rsinθ) - u(Rcos(-θ),Rsin(-θ))}Rcosθdθ 5. 使用Matlab编写程序,计算出实部的积分和虚部的积分,并将其相加得到柯西主值积分的结果。 下面是Matlab代码的实现: ``` function [ CV ] = CauchyPV( R, u, v ) % Cauchy Principal Value Integration % R: radius of the integration path % u: real part of the integrand function % v: imaginary part of the integrand function % integrate along the real axis I1 = integral(@(x)u(x,0),-R,R,'ArrayValued',true); % integrate along the circular arc I2 = integral(@(theta)(u(R*cos(theta),R*sin(theta))-u(R*cos(-theta),R*sin(-theta))).*R.*cos(theta),0,pi/2,'ArrayValued',true); % calculate the Cauchy principal value CV = I1 + 1i*I2; end ``` 其中,u和v为被积函数f(z)的实部和虚部函数,分别作为参数传入函数中。函数返回柯西主值积分的结果CV。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值