xgboost二分类

Xgboost 应用

  1. xgboost 二分类
  2. 图形化方式分析训练结果

1. xgboost 二分类

二分类介绍

本文以经典的乳腺癌数据集,演示如何使用xgboost做二分类。本文仅仅是使用xgboost开发模型的一个开胃菜。

代码

from sklearn import datasets
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn import metrics
import pickle

#  加载示例数据
dbunch = datasets.load_breast_cancer(as_frame=True)
df = dbunch.frame
features = dbunch.feature_names
target_names = dbunch.target_names
target = 'target'

n_valid = 50
train_df, valid_df = train_test_split(df, test_size=n_valid, random_state=42)

# 设置模型超参数
params = {
    'tree_method': 'exact',
    'objective': 'binary:logistic',
    'n_estimators': 50,
    'eval_metric': ['error', 'logloss'],
}

# 使用xgboost提供的兼容sklearn接口的方式创建一个分类器
clf = xgb.XGBClassifier(**params)
clf.fit(train_df[features], train_df[target],
        eval_set=[(train_df[features], train_df[target]), (valid_df[features], valid_df[target])],
        verbose=10)

y_true = valid_df[target]
y_pred = clf.predict(valid_df[features])

print(metrics.classification_report(y_true, y_pred, target_names=target_names))

# 如果模型训练达到期望的指标,以xgboost提供的格式保存模型
clf.save_model('breast_cancer_best_model.ubj')

# 由于在下一篇技术文章分析模型效果时,需要用到训练过程中的损失函数值,下面以pickle方式保存模型
with open('breast_cancer_best_model.pkl', 'wb') as f:
    pickle.dump(clf, f)


结果展示

在这里插入图片描述


下一篇

xgboost 二分类训练效果图示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值