XGBoost之回归算法

本文介绍了XGBoost算法,它是基于GBDT的增强版本,通过二阶泰勒展开优化损失函数,增加正则项防止过拟合。文章详细讲解了目标函数、树的生成过程以及在回归任务中的应用,包括贪心和近似算法,以及算法的实现和特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 XGBoost算法简介

XGBoost(Extreme Gradient Boosting)算法是陈天奇博士于2016年发表的论文《 XGBoost:A Scalable Tree Boosting System》中正式提出的。XGBoost在GBDT算法的基础上作出了一系列的优化,如在损失函数的计算中增加了二阶导数,增加了正则项,一定程度上的并行计算等。

XGBoost算法在机器学习中有着广泛的应用,在机器学习大赛中有着不错的表现。

XGBoost算法支持回归算法与分类算法。本文介绍其中的回归算法。

2 关于目标函数

2.1 损失函数

f_{t}(x)表示第t轮预测值,w_{t}(x)表示第t棵树在样本x处的取值(权重),L(y,f_{t}(x))表示第t轮的损失函数,损失函数L(y,f_{t}(x))二阶可导。

L(y,f_{t}(x))二阶泰勒展开:

L(y,f_{t}(x))=L(y,f_{t-1}(x)+w_{t}(x))=L(y,f_{t-1}(x))+\frac{\partial L(y,f(x))}{\partial f(x)}|_{f(x)=f_{t-1}(x)}w_{t}(x)+\frac{\partial^2 L(y,f(x))}{2\partial f^2(x)}|_{f(x)=f_{t-1}(x)}w_{t}^{2}(x)+constant

g_{t}=\frac{\partial L(y,f(x))}{\partial f(x)}|_{f(x)=f_{t-1}(x)}h_{t}=\frac{\partial^2 L(y,f(x))}{\partial f^2(x)}|_{f(x)=f_{t-1}(x)}

2.2 目标函数

针对样本构造目标函数,在第t轮时,

Obj=\sum_{i=1}^{N}L(y_{i},f_{t}(x_{i}))

=\sum_{i=1}^{N}(L(y_{i},f_{t-1}(x_{i}))+\frac{\partial L(y_{i},f(x))}{\partial f(x)}|_{f(x)=f_{t-1}(x_{i})}w_{t}(x_{i})+\frac{\partial^2 L(y_{i},f(x))}{2\partial f^2(x)}|_{f(x)=f_{t-1}(x_{i})}w_{t}^{2}(x_{i})+constant)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值