1 XGBoost算法简介
XGBoost(Extreme Gradient Boosting)算法是陈天奇博士于2016年发表的论文《 XGBoost:A Scalable Tree Boosting System》中正式提出的。XGBoost在GBDT算法的基础上作出了一系列的优化,如在损失函数的计算中增加了二阶导数,增加了正则项,一定程度上的并行计算等。
XGBoost算法在机器学习中有着广泛的应用,在机器学习大赛中有着不错的表现。
XGBoost算法支持回归算法与分类算法。本文介绍其中的回归算法。
2 关于目标函数
2.1 损失函数
以表示第
轮预测值,
表示第
棵树在样本
处的取值(权重),
表示第
轮的损失函数,损失函数
二阶可导。
将二阶泰勒展开:
记,
2.2 目标函数
针对样本构造目标函数,在第轮时,