Pytorch Note33 数据增强

数据增强是防止过拟合、提升模型准确率和泛化能力的有效手段。PyTorch提供了一系列方法,包括随机比例放缩、随机位置截取、随机翻转、随机旋转和色彩调整等。这些方法可以通过torchvision库实现,如`torchvision.transforms`中的Resize、RandomCrop、HorizontalFlip、RandomRotation和ColorJitter等。通过组合使用这些变换,可以创建多样化的训练样本,从而提高模型的性能。

Pytorch Note33 数据增强


全部笔记的汇总贴: Pytorch Note 快乐星球

前面我们已经讲了几个非常著名的卷积网络的结构,但是单单只靠这些网络并不能取得 state-of-the-art 的结果,现实问题往往更加复杂,非常容易出现过拟合的问题,而数据增强的方法是对抗过拟合问题的一个重要方法,可以提高模型的准确率和泛化能力。

2012 年 AlexNet 在 ImageNet 上大获全胜,图片增强方法功不可没,因为有了图片增强,使得训练的数据集比实际数据集多了很多’新’样本,减少了过拟合的问题,下面我们来具体解释一下。

常用的数据增强方法

常用的数据增强方法如下:

  1. 对图片进行一定比例缩放
  2. 对图片进行随机位置的截取
  3. 对图片进行随机的水平和竖直翻转
  4. 对图片进行随机角度的旋转
  5. 对图片进行亮度、对比度和颜色的随机变化

这些方法 pytorch 都已经为我们内置在了 torchvision 里面,我们在安装 pytorch 的时候也安装了 torchvision,下面我们来依次展示一下这些数据增强方法

from<
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风信子的猫Redamancy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值