GAN Step By Step -- Step2 GAN的详细介绍及其应用

本文带你深入了解GAN,从基础框架到10大代表性算法如DCGAN、CycleGAN等,探讨其优缺点,并展示了GAN在图像生成、超分辨率、医疗检测等领域的应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GAN Step By Step

logo

心血来潮

GSBS,顾名思义,我希望我自己能够一步一步的学习GAN。GAN 又名 生成对抗网络,是最近几年很热门的一种无监督算法,他能生成出非常逼真的照片,图像甚至视频。GAN是一个图像的全新的领域,从2014的GAN的发展现在,在计算机视觉中扮演着越来越重要的角色,并且每年都能产出各色各样的东西,GAN的理论和发展都蛮多的。我感觉最近有很多人都在学习GAN,但是国内可能缺少比较多的GAN的理论及其实现,所以我也想着和大家一起学习,并且提供主流框架下 pytorch,tensorflow,keras 的一些实现教学。

在一个2016年的研讨会,杨立昆描述生成式对抗网络是“机器学习这二十年来最酷的想法”。

Step2 GAN的详细介绍及其应用

GAN基本框架

上一次已经介绍了一下GAN的基本框架和基本公式,如图所示


10大典型的GAN算法

GAN 算法有数百种之多,大家对于 GAN 的研究呈指数级的上涨,目前每个月都有数百篇论坛是关于对抗网络的。

下图是2014-2018每个月关于 GAN 的论文发表数量:

关于GANs的论文呈指数级增长

如果你对 GANs 算法感兴趣,可以在 「GANs动物园」里查看几乎所有的算法。我们为大家从众多算法中挑选了10个比较有代表性的算法,技术人员可以看看他的论文和代码。

在这里插入图片描述

GAN MAPs

接下来,我也会一一学习这些GAN的知识,一起遍历这个GAN的地图

算法论文代码
GAN论文地址代码地址
DCGAN论文地址代码地址
CGAN论文地址代码地址
CycleGAN论文地址代码地址
CoGAN论文地址代码地址
ProGAN论文地址代码地址
WGAN论文地址代码地址
SAGAN论文地址代码地址
BigGAN论文地址代码地址

上面内容整理自《Generative Adversarial Networks – The Story So Far》原文中对算法有一些粗略的说明,感兴趣的可以看看。

GAN的优缺点

3个优势

  1. 能更好建模数据分布(图像更锐利、清晰)
  2. 理论上,GANs 能训练任何一种生成器网络。其他的框架需要生成器网络有一些特定的函数形式,比如输出层是高斯的。
  3. 无需利用马尔科夫链反复采样,无需在学习过程中进行推断,没有复杂的变分下界,避开近似计算棘手的概率的难题。

2个缺陷

  1. 难训练,不稳定。生成器和判别器之间需要很好的同步,但是在实际训练中很容易D收敛,G发散。D/G 的训练需要精心的设计。
  2. 模式缺失(Mode Collapse)问题。GANs的学习过程可能出现模式缺失,生成器开始退化,总是生成同样的样本点,无法继续学习。

Application


姿势引导人形像生成

通过姿势的附加输入,我们可以将图像转换为不同的姿势。例如,右上角图像是基础姿势,右下角是生成的图像。

img


下面的优化结果列是生成的图像。

img


该设计由二级图像发生器和鉴频器组成。生成器使用元数据(姿势)和原始图像重建图像。判别器使用原始图像作为CGAN设计标签输入的一部分。

img


CycleGAN

跨域名转让将很可能成为第一批商业应用。GANs将图像从一个领域(如真实的风景)转换为另一个领域(莫奈绘画或梵高)。

img


例如,它可以在斑马和马之间转换图片。

img


Cyclegan构建了两个网络G和F来构建从一个域到另一个域以及反向的图像。它使用判别器d来批评生成的图像有多好。例如,G将真实图像转换为梵高风格的绘画,并且DY用于区分图像是真实的还是生成的。

域A到域B:------------------------>

bg right width:600px

我们在反向域B域A中重复该过程:

width:600px


PixelDTGAN

根据名人图片推荐商品已经成为时尚博客和电子商务的热门话题。Pixeldtgan的作用就是从图像中创建服装图像和样式。

img


bg  width:600px

bg width:600px


超分辨率

从低分辨率创建超分辨率图像。这是GAN显示出非常令人印象深刻的结果,也是具有直接商业可能性的一个领域。

img


与许多GAN的设计类似,它是由多层卷积层、批标准化、高级relu和跳跃连接组成。

img


PGGAN

Progressive GAN可能是第一个展示商业化图像质量的GAN之一。以下是由GAN创建的1024×1024名人形象。

img


它采用分而治之的策略,使训练更加可行。卷积层的一次又一次训练构建出2倍分辨率的图像。

img


在9个阶段中,生成1024×1024图像。

img


高分辨率图像合成

需要注意的是这并非图像分割,而是从语义图上生成图像。由于采集样本非常昂贵,我们采用生成的数据来补充培训数据集,以降低开发成本。在训练自动驾驶汽车时可以自动生成视频,而不是看到它们在附近巡航,这就为我们的生活带来了便捷。

网络设计:

img

bg right:30% width:600px


文本到图像(StackGAN

文本到图像是域转移GAN的早期应用之一。比如,我们输入一个句子就可以生成多个符合描述的图像。

bg vertical width:600px

bg right:60% width:600px


文本到图像合成

另一个比较通用的实现:

img


人脸合成

不同姿态下的合成面:使用单个输入图像,我们可以在不同的视角下创建面。例如,我们可以使用它来转换更容易进行人脸识别图像。

bg right width:700px


图像修复

几十年前,修复图像一直是一个重要的课题。gan就可以用于修复图像并用创建的“内容”填充缺失的部分。

img


学习联合分配

用面部字符P(金发,女性,微笑,戴眼镜),P(棕色,男性,微笑,没有眼镜)等不同组合创建GAN是很不现实的。维数的诅咒使得GAN的数量呈指数增长。但我们可以学习单个数据分布并将它们组合以形成不同的分布,即不同的属性组合。

width:800px

bg right width:600px


DiscoGAN

DiscoGAN提供了匹配的风格:许多潜在的应用程序。DiscoGAN在没有标签或配对的情况下学习跨域关系。例如,它成功地将样式(或图案)从一个域(手提包)传输到另一个域(鞋子)。

img

DiscoGAN和cyclegan在网络设计中非常相似。


img


Pix2Pix

PIX2PIx是一种图像到图像的翻译,在跨域Gan的论文中经常被引用。例如,它可以将卫星图像转换为地图(图片左下角)。

img


DTN

从图片中创建表情符号。

bg right:40% width:500px

img


纹理合成

img


图像编辑 (IcGAN)

重建或编辑具有特定属性的图像。

width:500px

img


人脸老化(Age-cGAN)

width:500px

img


创建动画角色

众所周知,游戏开发和动画制作成本很高,并且雇佣了许多制作艺术家来完成相对常规的任务。但通过GAN就可以自动生成动画角色并为其上色。

center width:400px

使用Generative Adversarial Networks创建自动动画人物角色


生成器和判别器由多层卷积层、批标准化和具有跳过链接的relu组成。

img


神经照片编辑器

基于内容的图像编辑:例如,扩展发带。

img神经照片编辑


细化图像

img

目标检测

这是用gan增强现有解决方案的一个应用程序。

img


图像融合

将图像混合在一起。

img

生成三维对象

这是用gan创建三维对象时经常引用的一篇文章。

img


音乐的产生

GaN可以应用于非图像领域,如作曲。

img

img


医疗(异常检测)

GAN还可以扩展到其他行业,例如医学中的肿瘤检测。

img

img

<think>嗯,用户之前问过关于MOS管寄生电容导致关断尖峰的原理,现在他接着问如何减弱关断尖峰。我需要先回顾之前的回答,确保这次的内容连贯且不重复。用户可能是在设计开关电源或者类似电路时遇到了实际问题,需要具体的解决方案。 首先,用户可能是工程师或学生,他们需要实际可行的方法,而不仅仅是理论。所以回答要具体,包括设计措施、元件选择、布局优化等。之前提到的抑制措施有优化驱动回路、缓冲电路、调整驱动电阻和PCB布局,可能需要更详细地展开这些点,特别是针对关断尖峰。 关断尖峰的核心原因是电流突变和寄生电感,所以重点应放在如何减少di/dt和寄生电感,以及吸收能量。可能需要详细解释每个方法的原理,比如RC缓冲电路如何工作,如何选择参数,还有驱动电阻的影响,如何折中考虑开关损耗。 另外,用户可能希望了解实际应用中的案例或参数参考,比如具体的电阻电容值范围,布局技巧如缩短走线长度、使用多层板等。还要注意是否提到其他方法,比如使用软关断技术或TVS二极管,这些在之前的回答中略有提及,可能需要深入。 还要考虑用户可能忽略的因素,比如温度影响,或者不同器件类型(如SiC MOSFET)的特性差异。是否需要分点列出,结构清晰,便于用户逐步实施。 需要检查是否有遗漏的关键点,比如体二极管的反向恢复问题,是否在关断尖峰中起作用,是否需要优化续流回路。此外,仿真和测试的建议也很重要,用户可能需要验证设计效果。 最后,确保语言简洁,技术术语准确,但不过于复杂,适合不同层次的读者理解。可能需要用例子或公式来说明,比如计算尖峰电压的公式,帮助用户量化设计选择。</think>--- ### **减弱MOS管关断尖峰的关键措施及原理** 关断尖峰主要由**漏极电流突变($dI/dt$)与寄生电感($L_{\text{寄生}}$)**共同作用引起,其电压尖峰为: $$ V_{\text{spike}} = L_{\text{寄生}} \cdot \frac{dI_D}{dt} $$ 要有效抑制尖峰,需从**降低$dI/dt$、减小寄生电感、吸收谐振能量**三方面入手。以下是具体设计方法: --- #### **一、优化驱动设计** 1. **调整栅极电阻$R_g$** - **原理**:增大$R_g$可减缓栅极电压$V_{gs}$的下降速度,从而降低漏极电流的关断斜率($dI_D/dt$)。 - **公式**: $$ \frac{dI_D}{dt} \propto \frac{V_{\text{驱动}}}{R_g \cdot (C_{gs} + C_{gd})} $$ - **折中**:$R_g$过大会增加开关损耗,需通过实验选择最佳值(通常取5-50Ω)。 2. **有源米勒箝位(Active Miller Clamp)** - **作用**:在关断阶段主动吸收$C_{gd}$的米勒电容电流,避免$V_{gs}$被抬升导致误触发。 - **实现**:在栅极驱动IC中集成此功能(如TI的UCC27524)。 --- #### **二、抑制寄生电感** 1. **PCB布局优化** - **关键规则**: - **最短电流环路**:主功率回路(如MOSFET-电感-电容)走线长度≤10mm。 - **低电感布线**:使用宽铜箔(≥2mm)、多层板(电源/地层紧邻信号层)。 - **示例**:1nH的PCB走线电感在$dI/dt=100A/μs$时,产生$V_{\text{spike}}=100V$! 2. **器件封装选择** - 优先选用**低电感封装**(如DFN5x6、TOLL),相比传统TO-247可减少寄生电感30%-50%。 --- #### **三、能量吸收电路** 1. **RC缓冲电路(Snubber)** - **拓扑**:在MOSFET漏-源极并联RC串联电路。 - **参数设计**: - **电容$C_{\text{snub}}$**: $$ C_{\text{snub}} = \frac{L_{\text{寄生}} \cdot I_{\text{peak}}^2}{V_{\text{spike}}^2}} $$ 通常取1nF~10nF(耐压需≥2倍尖峰电压)。 - **电阻$R_{\text{snub}}$**: $$ R_{\text{snub}} = \sqrt{\frac{L_{\text{寄生}}}{C_{\text{snub}}}} $$ 典型值10Ω~100Ω(需满足$R_{\text{snub}} > \sqrt{L/C}$避免振荡)。 - **案例**:在48V输入的Buck电路中,添加10Ω+4.7nF缓冲可使关断尖峰从150V降至80V。 2. **TVS二极管箝位** - **选型原则**: - 击穿电压$V_{\text{BR}}$略高于正常工作电压(如60V系统选68V TVS)。 - 峰值脉冲功率需覆盖尖峰能量(例如600W的SMBJ系列)。 --- #### **四、软关断技术(Soft Turn-Off)** 1. **两阶段关断驱动** - **原理**:在关断后期降低$V_{gs}$的下降速度,减小$dI/dt$。 - **实现**:通过驱动IC的分级电阻控制(如先5Ω快速关断,后20Ω慢速关断)。 2. **电流斜率控制** - **方法**:在栅极驱动路径中串联非线性元件(如磁珠或饱和电感),在高$dI/dt$时自动增大阻抗。 --- #### **五、器件与拓扑改进** 1. **使用SiC/GaN器件** - **优势**:SiC MOSFET的$C_{oss}$(输出电容)更小,可降低谐振能量。 - **注意**:需配套优化驱动(因SiC的$dV/dt$可达100V/ns,易引发EMI)。 2. **拓扑优化** - **同步整流**:用MOSFET替代续流二极管,消除反向恢复电流(适用于Buck、LLC等拓扑)。 - **多相并联**:分流电流以降低单管$dI/dt$(如CPU供电的多相VRM)。 --- #### **六、实测验证与调试** 1. **关键测试点**: - **漏-源电压$V_{ds}$**:观察尖峰幅值及时序(需使用高压差分探头)。 - **栅极波形$V_{gs}$**:检查米勒平台是否稳定。 2. **调试步骤**: - **Step1**:不接缓冲电路,测量原始尖峰电压。 - **Step2**:调整$R_g$,观察尖峰与损耗的平衡点。 - **Step3**:添加RC缓冲,逐步优化$C_{\text{snub}}$和$R_{\text{snub}}$。 --- **总结**:减弱关断尖峰需**“多管齐下”**: 1. 通过驱动优化和缓冲电路降低$dI/dt$; 2. 通过PCB布局和封装选择最小化寄生电感; 3. 利用吸收电路和拓扑改进分散能量。 实际设计中需结合仿真(如PLECS、LTspice)与实测反复迭代,最终实现效率与可靠性的平衡。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风信子的猫Redamancy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值