Kaggle的一个入门级比赛Tatanic数据集二分类(python实现)

该博客分享了一篇使用PyTorch实现的Kaggle入门级比赛——Titanic数据集的二分类问题。作者通过训练神经网络,达到了0.76的得分,并提供了数据链接和代码示例。
摘要由CSDN通过智能技术生成

    这是一个kaggle入门级比赛。程序基于pytorch,目的是利用数据集train_data训练一个神经网络,用以预测test_data的结果。上传kaggle后最终得分0.76(我很菜)。数据链接如下

                                        https://www.kaggle.com/c/titanic/data

代码如下:

import torch
from torch.utils.data import Dataset
import numpy as np 
import pandas as pd 
import matplotlib as mlp
class TatanicDataset(Dataset):
    def __init__(self,filepath):
    	# 从原始数据集中取五个特征
        features = ["Pclass", "Sex", "SibSp", "Parch", "Fare"]
        data = pd.read_csv(filepath)
        self.len = data.shape[0]  # shape(多少行,多少列)
        
        # data[features]的类型是DataFrame,进行onehot表示
        self.x_data = torch.from_numpy(np.array(pd.get_dummies(data[features])))
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值