19KDD Representation Learning for Attributed Multiplex Heterogeneous Network
背景介绍
文章核心思想?
本文针对Attributed Multiplex Heterogeneous网络,即边和节点有有多种类型,且节点有多种特征的网络,提出GATNE模型,学习每个节点在不同类型边下的embedding表示,模型同时支持直推式学习和归纳式学习,利用四个数据集进行实验,表现良好。
Attributed Multiplex Heterogeneous Network挑战
多种类型的边:每个节点对有多种关系,比如在电子商务领域中,用户和item之间,可以点击、购买、添加到购物车等,需要借助多种关系来学习embedding
部分观察:真实网络中往往不能看到全局信息,长尾用户只和部分产品有交互作用,现有大部分模型中都只关注直推式学习,不能解决长尾或者冷启动问题
大规模:真实网络往往有亿级节点和边,需要设计模型处理大规模数据
文章贡献
定义了多重异构特征网络embedding
同时支持直推式和归纳式学习embedding,并提供了理论证明
模型高效,适合处理大规模数据
算法原理
根据不同节点类型(单一节点、多种节点)、不同边类型(单一边、多种边)、节点性质(有性质、无性质),可以分成如下6种网络类型,不同网络有不同的建模方法:

本文关注Attributed Multiplex Heterogeneous 网络:
Attributed:考虑节点性质,如用户性别、年龄、购买力等
Multiplex:多重边,节点之间可能有多种关系,比如说两个用户之间可能为好友、同学、交易关系等;用户和item之间可以浏览、点击、添加到购物车、购买等
Heterogeneous:异构,节点和边有多种类型,节点类型+边类型>2
下图为Attributed Multiplex heterogeneous network,左边一部分是具有节点性质的用户,用户特征包括性别、年龄、位置等,item特征包括价格、品牌等,边特调整包括点击、添加到喜欢等。中间部分表示三种方法建模:AMHEN(Attributed Multiplex Heterogeneous Network),MHEM(Multiplex Heterogeneous Network),HON(Homogeneous Network),右图是建模结果,可以看出,AMHEN(考虑多种类型,节点性质的异构图网络),优于MHEN(不考虑节点性质的异构网络),优于HON同构网络。

本文提出General Attributed Multiplex Heterogeneous Network Embedding(GATNE),希望每个节点在不同类型边中有不同的表示,比如说用户A在点击商品的场景下学习一种向量表示,在购买商品的场景下学习另一种向量表示,而不同场景之间并不完全独立,希望用base embedding来当作不同类型关系传递信息的桥梁,我们综合base embedding与每一类型边的edge embedding来进行建模,在直推式学习(Transductive)背景下,提出GATNE-T模型,在归纳式学习(Inductive)背景下,考虑节点特征,提出GATNE-I模型。
模型结构如下图所示,网络结构利用两部分向量Base Embedding和Edge embedding表示,其中Base Embedding为共享向量,出现在每一种边类型中;Edge embedding在每一种边类型中不同;GATNE-T仅仅利用了网络结构信息,GATNE-I同时考虑了网络结构信息和节点性质。

Transductive Model: GATNE-T
GATNE-T的核心思想就是聚合不同边类型的邻居到当前节点,然后对每一种边类型的节点都生成不同的向量表示,模型可分为如下四步:
Step1:类似于Graphsage对邻居聚合的思想,节点