Meta-Learning with Implicit Gradients

论文信息

题目:Meta-Learning with Implicit Gradients

作者:

期刊会议:

年份:2019

论文地址

代码

基础补充

内容

动机

动机

  • Recent work has studied how meta-learning algorithms can acquire such a capability by learning to efficiently learn a range of tasks, thereby enabling learning of a new task with as little as a single example. We focus on this class of optimization-based methods, and in particular the model-agnostic meta-learning (MAML) formulation. MAML has been shown to be as ex- pressive as black-box approaches, is applicable to a broad range of settings, and recovers a convergent and consistent optimization procedure
  • Despite its appealing properties, meta-learning an initialization requires backpropagation through the inner optimization process. As a result, the meta-learning process requires higher-order derivatives, imposes a non-trivial computational and memory burden, and can suffer from vanishing gradients.
    创新
  • Our approach is agnostic to the choice of inner loop optimizer and can gracefully handle many gradient steps without vanishing gradients or memory constraints
  • These limitations make it harder to scale optimization-based meta learning methods to tasks involving medium or large datasets, or those that require many inner-loop optimization steps. Our goal is to develop an algorithm that addresses these limitations

Our approach of decoupling of meta-gradient computation and choice of inner level optimizer has a number of appealing properties.

  • First, the inner optimization path need not be stored nor differentiated through, thereby making implicit MAML memory efficient and scalable to a large number of inner optimization steps.
  • Second, implicit MAML is agnostic to the inner optimization method used, as long as it can find an approximate solution to the inner-level optimization problem. This permits the use of higher-order methods, and in principle even non-differentiable optimization methods or components like sample- based optimization, line-search, or those provided by proprietary software
  • Finally, we also provide the first (to our knowledge) non-asymptotic theoretical analysis of bi-level optimization.

方法

  • Our algorithm aims to learn a set of parameters such that an optimization algorithm that is initialized at and regularized to this parameter vector leads to good generalization for a variety of learning tasks. By leveraging the implicit differentiation approach, we derive an analytical expression for the meta (or outer level) gradient that depends only on the solution to the inner optimization and not the path taken by the inner optimization algorithm, as depicted in Figure 1.
    在这里插入图片描述

Review of Few-Shot Supervised Learning and MAML

结论

不足

不懂

可借鉴地方

  • 9
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pinn山里娃

原创不易请多多支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值