2022-2-3第四章机器学习进阶回归实践

本文探讨了Logistic回归在解决分类问题中的基本原理,包括softmax回归在多分类中的应用。讲解了AUC作为评估指标的重要性和处理噪声的方法,涉及权重设置及模型选择(如LASSO和岭回归)。还介绍了自回归模型AR以及正则项在防止过拟合的作用。
摘要由CSDN通过智能技术生成

Logistic回归:解决分类问题

基本方程
在这里插入图片描述
不同的回归都假定了样本的分布,得到的结果也会是这个回归模型
在这里插入图片描述

softmax回归–多分类问题

在这里插入图片描述
AUC面积作为预测好坏的判据
在这里插入图片描述
(曲线下面积最少是0.5,最大是1,小于0.5没意义)ROC曲线下面积为AUC

回归实践

取对数可以较好的过滤掉数据中的噪音

在这里插入图片描述各个特征值可以设置权重,如何处理权重

模型复杂倾向于做LASSO、模型简单倾向于做岭回归—解决过拟合—正则项

自回归模型—AR模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值