参考Performance metrics in multi-objective optimization
Riquelme, N., Lücken, C. V., & Baran, B. (2015, 19-23 Oct. 2015). Performance metrics in multi-objective optimization. Paper presented at the 2015 Latin American Computing Conference (CLEI).
目录
2.3 inverted generational distance(IGD)
单目标优化问题比较各种算法的性能可以直接通过目标值比较,但是多目标优化算法找到的往往是帕累托解,需要一些合适的评价指标来比较这些算法的性能。
1.多目标优化定义
多目标优化问题有n个决策变量,k个目标函数,空间包括两类:n维的决策空间,代表每个解,k维的目标空间
,代表每个解的目标值,
中的每个点在
都有对应的点,但是
中可能多个点对应
中一个点

- 帕累托支配(Pareto Dominance):给定属于

文章介绍了多目标优化问题的定义,包括帕累托支配和最优前沿概念。重点讨论了四种常用的评价算法性能的指标:hypervolume(超体积),generationaldistance(代际距离),invertedgenerationaldistance(反向代际距离)以及setcoverage(集合覆盖),并阐述了它们在衡量解集的基数、准确性和多样性方面的应用。
最低0.47元/天 解锁文章
4865

被折叠的 条评论
为什么被折叠?



