多目标优化算法评价指标(performance metrics)

文章介绍了多目标优化问题的定义,包括帕累托支配和最优前沿概念。重点讨论了四种常用的评价算法性能的指标:hypervolume(超体积),generationaldistance(代际距离),invertedgenerationaldistance(反向代际距离)以及setcoverage(集合覆盖),并阐述了它们在衡量解集的基数、准确性和多样性方面的应用。

参考Performance metrics in multi-objective optimization​​​​​​​

Riquelme, N., Lücken, C. V., & Baran, B. (2015, 19-23 Oct. 2015). Performance metrics in multi-objective optimization. Paper presented at the 2015 Latin American Computing Conference (CLEI). 

目录

1.多目标优化定义

2.常用评价指标 

2.1 hypervolume (HV)

2.2 generational distance(GD)

2.3 inverted generational distance(IGD)

2.4 set coverage(C)


单目标优化问题比较各种算法的性能可以直接通过目标值比较,但是多目标优化算法找到的往往是帕累托解,需要一些合适的评价指标来比较这些算法的性能。

1.多目标优化定义

多目标优化问题有n个决策变量,k个目标函数,空间包括两类:n维的决策空间\Omega,代表每个解,k维的目标空间\Lambda,代表每个解的目标值,\Omega中的每个点在\Lambda都有对应的点,但是\Omega中可能多个点对应\Lambda中一个点

  • 帕累托支配(Pareto Dominance):给定属于
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值